cho a>0 CMR: nếu |x|<a thì -a<x<a
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình như bạn nhầm đề bài, khả năng là \(13a+b+2c=0\), nếu không có một giới hạn gì cho $c$, khi đó \(f(-2)f(3)\) không thể chỉ nhỏ hơn hoặc bằng $0$
Ta có \(\left\{\begin{matrix} f(-2)=4a-2b+c\\ f(3)=9a+3b+c\end{matrix}\right.\Rightarrow f(-2)+f(3)=13a+b+2c\)
\(\Leftrightarrow f(-2)+f(3)=0\)
Nếu một trong hai số bằng $0$ thì \(f(-2)f(3)=0\) $(1)$
Nếu hai số đều khác $0$ thì \(f(-2),f(3)\) trái dấu , suy ra \(f(-2)f(3)<0(2)\)
Từ \((1),(2)\Rightarrow f(-2)f(3)\leq 0\) (đpcm)
a. Ta có : x - y = 0 \(\Rightarrow\)x = y
Ta có : xy = xx ( vì x = y) = x^2
Mà x^2 \(\ge\)0 với mọi x nên xy \(\ge\)0 với mọi x.
a) Ta có x-y=0 => x=y
Ta có xy=x.x=x2 > 0 (dấu = <=> x=y=0)
b) x-y+z=0 => x=y-z.Theo kết quả câu a ta có: x(y-z) > 0 => xy-xz > 0 (1)
Tương tự: x-y+z=0 => y=x+z => y(x+z) > 0 => xy+yz > 0 (2)
x-y+z=0 => z=y-x => z(y-x) > 0 => zy-zx > 0 (3)
Cộng từng vế của bất đẳng thức (1),(2),(3) ta đc 2(xy+yz-zx) > 0
Do đó xy+yz-zx > 0 (dấu = <=> x=y=z=0)
Good luck
Ta có x-y-z=0=> x=y+z
=> A= x(yz-y^2-z^2) thay x=y+z vào A ta được
A= (y+z)(yz-y^2-z^2)=y^2z-y^3-z^2y+yz^2-zy^2-z^3=-y^3-z^3
mà B=y^3+z^3
=> A+B=-y^3-z^3+y^3+z^3=0(dpcm)
1;\(A=x^3+y^3+z^3-3xyz\)
\(A=\left(x+y\right)^3-3xy\left(x+y\right)+z^3-3xyz\)
\(A=\left(x+y+z\right)\left[\left(x+y\right)^2-\left(x+y\right)z+z^2\right]-3xy\left(x+y+z\right)\)
\(A=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)=0\)
2;Nếu A = 0
Điều ngược lại đúng khi x^2+y^2+z^2-xy-yz-xz khác 0
Ta đi chứng minh A phụ thuộc vào x+y+z
\(A=x^3+y^3+z^3-3xyz.\)
\(=\left(x+y\right)^3-3xy\left(x+y\right)+z^3-3xyz\)
\(=\left(x+y+z\right)\left[\left(x+y\right)^2-z\left(x+y\right)+z^2\right]-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2-3xy\right)\)
\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)\)
Mà x^2+y^2+z^2-xy-yz-xz>0
nên x+y+z =0 thì A=0
|x|<a
nên \(x^2< a^2\)
hay -a<x<a