Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
Ta có: \(B=y^3+z^3\)
\(=y^2.\left(x-z\right)+z^2.\left(x-y\right)\)
\(=xy^2-y^2z+xz^2-yz^2\)
\(=xy^2+xz^2-\left(y^2z+yz^2\right)\)
\(=xy^2+xz^2-yz.\left(y+z\right)\)
\(=xy^2+xz^2-xyz\)
\(=-A\)
Do đó: \(A\) và \(B\) là 2 đa thức đối nhau.
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwweeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeerrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrttttttttttttttttttttttttttttttttttttttttttttttttyyyyyyyyyyyyyyyyyyyyyu
vì x - y - z = 0 nên x = y + z
Xét tổng A + B = xyz - xy2 - xz2 + y3 + z3
= ( y + z ) . yz - ( y + z ) . y2 - ( y + z ) . z2 + y3 + z3
= y2z + yz2 - y3 - y2z - yz2 - z3 + y3 + z3 = 0
Vậy ...
Ta có x-y-z=0=> x=y+z
=> A= x(yz-y^2-z^2) thay x=y+z vào A ta được
A= (y+z)(yz-y^2-z^2)=y^2z-y^3-z^2y+yz^2-zy^2-z^3=-y^3-z^3
mà B=y^3+z^3
=> A+B=-y^3-z^3+y^3+z^3=0(dpcm)