a) Chứng minh bất đẳng thức sau: \(\frac{x}{y}+\frac{y}{x}\ge2\)(với x và y cùng dấu)
b) Tìm giá trị nhỏ nhất của biểu thức P = \(\frac{x^2}{y^2}+\frac{y^2}{x^2}-3\left(\frac{x}{y}+\frac{y}{x}\right)+5\) (với\(x\ne0,y\ne0\) )
HELP...... MAI MÌNH PHẢI NỘP RỒI
MÌNH CẢM ƠN
b)áp dụng Bđt cô si
\(\frac{x^2}{y^2}+\frac{y^2}{x^2}\ge2\sqrt{\frac{x^2}{y^2}\cdot\frac{y^2}{x^2}}=2\)
\(\frac{x}{y}+\frac{y}{x}\ge2\sqrt{\frac{x}{y}\cdot\frac{y}{x}}=2\)\(\Rightarrow-3\left(\frac{x}{y}+\frac{y}{x}\right)\ge-6\)
\(\Rightarrow P\ge2+\left(-5\right)+5=1\)
Dấu = khi x=y
a)Áp dụng Bđt Cô si ta có:
\(\frac{x}{y}+\frac{y}{x}\ge2\sqrt{\frac{x}{y}\cdot\frac{y}{x}}=2\)
Dấu = khi \(x=y\)