2. Chứng minh : a5 - a chia hết cho 30 với a thuôc Z. Từ đó suy ra a5 và a có chữ số tận cùng giống nhau.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=a^5-a=a(a^4-1)
=a(a-1)(a+1)(a^2+1)
Vì a;a-1;a+1 là 3 số liên tiếp
nên a(a-1)(a+1) chia hết cho 3!=6
=>A chia hết cho 6
Vì 5 là số nguyên tố
nên a^5-a chia hết cho 5
=>A chia hết cho 30
Vì a và b là 2 số có tổng chia hết cho 10
Nên tổng các chữ số tận cùng của 2 số này chia hết cho 10
-) Nếu chữ số tận cùng của a và b bằng nhau
Thì chữ số tận cùng của a và b đều là 5 hoặc 0
Do đó a2 và b2 có cùng chữ số tận cùng
-) Nếu chữ số tận cùng của a lớn hơn b ( làm tương tự với c
+) Nếu chữ số tận cùng của a bằng 6
Do đó chữ số tận cùng của b bằng 4
Hai số này bình phương có cùng chữ số tận cùng là 6
+) Nếu chữ số tận cùng của a bằng 7
Do đó chữ số tận cùng của b bằng 3
Hai số này có bình phương có cùng chữ số tận cùng là 9
+) Nếu chữ số tận cùng của a bằng 8
Do đó chữ số tận cùng của b bằng 2
Hai số này có bình phương có cùng chữ số tận cùng là 4
+) Nếu chữ số tận cùng của a bằng 9
Do đó chữ số tận cùng của b bằng 1
Hai số này có bình phương có cùng chữ số tận cùng là 1
Vậy a2 và b2 có chữ số tận cùng giống nhau khi a và b có tổng chia hết cho 10
a) Xét hiệu : \(n^5-n\)
Đặt : \(A\text{=}n^5-n\)
Ta có : \(A\text{=}n.\left(n^4-1\right)\text{=}n.\left(n^2-1\right)\left(n^2+1\right)\)
\(A\text{=}n.\left(n+1\right).\left(n-1\right).\left(n^2+1\right)\)
Vì : \(n.\left(n+1\right)\) là tích hai số tự nhiên liên tiếp .
\(\Rightarrow A⋮2\)
Ta có : \(A\text{=}n\left(n+1\right)\left(n-1\right)\left(n^2+1\right)\)
\(A\text{=}n\left(n+1\right)\left(n-1\right)\left(n^2-4+5\right)\)
\(A\text{=}n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)+5n.\left(n+1\right)\left(n-1\right)\)
Ta thấy : \(\left\{{}\begin{matrix}n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)⋮5\\5n\left(n-1\right)\left(n+1\right)⋮5\end{matrix}\right.\) vì tích ở trên là tích của 5 số liên tiếp nên chia hết cho 5.
Do đó : \(A⋮10\)
\(\Rightarrow A\) có chữ số tận cùng là 0.
Suy ra : đpcm.
b) Vì \(n⋮3̸\) nên n có dạng : \(3k+1hoặc3k+2\left(k\in N\right)\)
Với : n= 3k+1
Thì : \(n^2\text{=}9k^2+6k+1\)
Do đó : \(n^2\) chia 3 dư 1.
Với : n=3k+2
Thì : \(n^2\text{=}9k^2+12k+4\text{=}9k^2+12k+3+1\)
Do đó : \(n^2\) chia 3 dư 1.
Suy ra : đpcm.
Đặt \(A=a^5+b^5+c^5\)
\(A-\left(a+b+c\right)=a^5-a+b^5-b+c^5-c\)
Ta có: \(B=a^5-a=a\left(a^4-1\right)=a\left(a-1\right)\left(a+1\right)\left(a^2+1\right)\)
Nếu \(a\) chia hết cho 5 \(\Rightarrow B\) chia hết cho 5
Nếu a chia 5 dư 1 hoặc -1 \(\Rightarrow\left(a-1\right)\left(a+1\right)\) chia hết chi 5 \(\Rightarrow\)B chia hết cho 5
Nếu a chia 5 dư 2 hoặc -2 \(\Rightarrow a^2+1\) chia 5 dư \(\left(\pm2\right)^2+1=5\Rightarrow a^2+1⋮5\Rightarrow B⋮5\)
Vậy \(B=a^5-a⋮5\) với mọi a nguyên
Hoàn toàn tương tự, \(b^5-b\) và \(c^5-c\) chia hết cho 5 với mọi b; c
\(\Rightarrow A-\left(a+b+c\right)⋮5\Rightarrow A⋮5\) (đpcm)
(Có thể ngắn gọn hơn là \(a^5\equiv a\left(mod5\right)\Rightarrow a^5-a⋮5\) ; \(\forall a\in Z\))
cmr [7+1].[7+2] chia hết cho 3
=8x9
=72
72 chia hết cho 3
ĐCPCM
Ta có chú ý chẵn cộng chẵn bằng chẵn
lẻ cộng chẵn bằng lẻ
lẻ cộng lẻ là chẵn
mà ta thấy \(3^{100}\) và\(19^{990}\)là lẻ mà lẻ cộng lẻ bằng chẵn
=> mà số chẵn chia hết cho 2
ĐCPCM
Vậy chữ số tận cùng của S là 3=> S không phải là số chính phương
1) CMR: (7+1)(7+2)\(⋮\)3
\(\left(7+1\right)\left(7+2\right)=8\cdot9⋮3\left(đpcm\right)\)
2) CMR: \(3^{100}+19^{990}⋮2\)
ta có: \(3^{100}\)có chữ số tận cùng là số lẻ
\(19^{990}\)có chữ số tận cùng là số lẻ
mà lẻ + lẻ = chẵn => đpcm
3) abcabc có ít nhất 3 ước số nguyên tố
ta có: abcabc = abc x 1001 = abc x 11 x 7 x 13
Vậy...
4) Cho \(M=1+3^1+3^2+...+3^{30}\)
Tìm chữ số tận cùng của M. Từ đó suy ra M có phải số chính phương không?
ta có: \(M=1+3^1+3^2+...+3^{30}\)(1)
\(\Rightarrow3M=3+3^2+3^3+...+3^{31}\)(2)
(2) - (1) \(\Leftrightarrow3M-M=\left(3+3^2+3^3+...+3^{31}\right)-\left(1+3^1+3^2+...+3^{30}\right)\)
\(\Leftrightarrow2M=3^{31}-1\)
ta có: \(3^{31}=3^{28}\cdot3^3=\left(3^4\right)^7\cdot27=\left(...1\right).27=...7\Rightarrow2M=...7-1=...6\)
\(\Rightarrow\orbr{\begin{cases}M=...3\\M=...8\end{cases}}\)mà số chính phương không có tận cùng là 3, 8
=>đpcm
Học tốt nhé ^3^
a5 - a = a.(a4 - 1) = a.(a2 - 1).(a2 + 1) = a.(a - 1).(a + 1).(a2 + 1) (*)
Dễ thấy a.(a - 1).(a + 1) chia hết cho 2 và 3 vì là tích 3 số nguyên liên tiếp
=> a5 - a chia hết cho 2 và 3
Mà (2;3)=1 => a5 - a chia hết cho 6 (1)
Ta đã biết số chính phương a2 khi chia cho 5 chỉ có thể dư 0; 1 hoặc 4
+ Nếu a2 chia 5 dư 0, do 5 nguyên tố nên a chia hết cho 5
Từ (*) => a5 - a chia hết cho 5
+ Nếu a2 chia 5 dư 1 => a2 - 1 chia hết cho 5
Từ (*) => a5 - a chia hết cho 5
+ Nếu a2 chia 5 dư 4 => a2 + 1 chia hết cho 5
Từ (*) => a5 - a chia hết cho 5
Như vậy, a5 - a luôn chia hết cho 5 với mọi a ϵ Z (2)
Từ (1) và (2), do (5;6)=1 => a5 - a chia hết cho 30 (')
=> a5 - a có tận cùng là 0 hay a5 và a có chữ số tận cùng giống nhau (")
(') và (") chính là đpcm