K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 11 2016

a5 - a = a.(a4 - 1) = a.(a2 - 1).(a2 + 1) = a.(a - 1).(a + 1).(a2 + 1) (*)

Dễ thấy a.(a - 1).(a + 1) chia hết cho 2 và 3 vì là tích 3 số nguyên liên tiếp

=> a5 - a chia hết cho 2 và 3

Mà (2;3)=1 => a5 - a chia hết cho 6 (1)

Ta đã biết số chính phương a2 khi chia cho 5 chỉ có thể dư 0; 1 hoặc 4

+ Nếu a2 chia 5 dư 0, do 5 nguyên tố nên a chia hết cho 5

Từ (*) => a5 - a chia hết cho 5

+ Nếu a2 chia 5 dư 1 => a2 - 1 chia hết cho 5

Từ (*) => a5 - a chia hết cho 5

+ Nếu a2 chia 5 dư 4 => a2 + 1 chia hết cho 5

Từ (*) => a5 - a chia hết cho 5

Như vậy, a5 - a luôn chia hết cho 5 với mọi a ϵ Z (2)

Từ (1) và (2), do (5;6)=1 => a5 - a chia hết cho 30 (')

=> a5 - a có tận cùng là 0 hay a5 và a có chữ số tận cùng giống nhau (")

(') và (") chính là đpcm

11 tháng 3 2017

\(A=a^5-a=a.\left(a^4-1\right)=a\left(a^2-1\right)\left(a^2+1\right)=a\left(a-1\right)\left(a+1\right)\left(a^2+1\right)=B\left(a^2+1\right)\)B là 3 số tự nhiên liên tiếp \(\left\{{}\begin{matrix}B⋮2\\B⋮3\\B⋮6\end{matrix}\right.\) ta cần c/m A chia cho 5

\(A=B\left(n^2+1\right)=B\left[\left(n^2-4\right)+5\right]=B\left(n^2-2^2\right)=B\left(n-2\right)\left(n+2\right)+5B=C+5B\)C là tích 5 số tự nhiên liên tiếp: \(\left\{{}\begin{matrix}C⋮5\\5B⋮5\end{matrix}\right.\)\(\Rightarrow A⋮5\)

\(\left\{{}\begin{matrix}A⋮5\\A⋮6\end{matrix}\right.\)\(\Rightarrow A⋮30\) => dpcm

22 tháng 1 2016

a^4-1 = (a-1)(a+1)(a^2+1)

Nếu a chia 5 du 1 suy ra n-1 chia het cho 5

Nêu a chia 5 du 2 suy ra n^2 chia 5 du 4 suy ra n^2+1 chia het cho 5  (dùng đồng dư)

tương tự với a chia 5 du 3,4

vay a^4-1 luôn chia het cho 5 

 

CM chia hết 7 là xong 

Nêu a chia 7 du 1 ,5,6 thay nhu tren vao a^4-1 la xong 

Voi a chia 7 du 2,3,4

Neu a chia 7 du 2 thi a^4 chia 7 du 16 ; a^2 chia 7 du 4<=>15a^2 chia 7 du 60

suy ra a^4+15a^2+1 chia 7 du 16+60+1=77 chia het cho 7

Neu a chia 7 du 3, 4 tươ]ng tu

 

 

 

 

22 tháng 1 2016

Ta có: a không chia hết cho 5

=> a chia 5 dư 1;2;3 hoặc 4

=>a4 chia 5 dư 1                    (tính chất)

=>a4-1 chia hết cho 5

Phần sau làm tương tự

27 tháng 11 2017

1) Ta có: \(a^2\left(a+1\right)+2a\left(a+1\right)=\left(a+1\right)\left(a^2+2a\right)=a\left(a+1\right)\left(a+2\right)\)

Với \(a\in Z\)thì \(a\left(a+1\right)\left(a+2\right)\)là tích của 3 số nguyên liên tiếp nên\(⋮6\)

2)Với \(a\in Z\)Ta có:\(a\left(2a-3\right)-2a\left(a+1\right)=a\left(2a-3-2a-2\right)=-5a⋮5\)

3) Ta có:\(x^2+2x+2=\left(x^2+2x+1\right)+1=\left(x+1\right)^2+1\ge1\)lớn hơn 0 với mọi x

4) Ta có: \(x^2-x+1=\left(x^2-2.\frac{1}{2}x+\frac{1}{4}\right)+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)lớn hơn 0 với mọi x

13 tháng 9 2018

a, n. (2n -3 ) -2n .(n + 1 ) chia hết cho 5

b, n. ( n + 5 ) - (n -3 ) . ( n + 2 ) chia hết cho 6