tìm stn nhỏ nhất sao cho số đó chia cho 3 dư 1;chia 4 dư 2;chia 5 dư 3;chia 6 dư 4 và chia hết cho 11
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số cần tỉm là a.
Theo đề bài, ta có: a + 2 chia hết cho 3 ; 4 ; 5 ; 6
Suy ra: a + 2 là BC ( 3 ; 4 ; 5 ; 6 )
BCNN ( 3 ; 4 ; 5 ; 6 ) = 60 => a + 2 = 60 . n
Do đó: a = 60 . n - 2 ; N = { 1 ; 2 ; 3 ; 4 }
Mặt khác a chia hết cho 11 lần lượt cho 1 ; 2 ; 3 ....
Ta thấy N = 7 => a = 418 chia hết cho 11.
Vậy số cần tìm là 418.
@@
Gọi số cần tìm là x (x thuộc N)
Vì số đó chia cho 3 dư 1, chia cho 4 dư 2, chia cho 5 dư 3, chia cho 6 dư 4
=> x+2 chia hết cho 2,3,4,5,6
Vì x là số tự nhiên nhỏ nhất thỏa mãn điều kiện => x+2 là bcnn(2,3,4,5,6);
=> x+2=60
=>x=58
vậy số cần tìm là 58
a, Vì số đó chia cho 6 dư 5; chia 19 dư 2 nên khi ta thêm vào số đó 55 đơn vị thì trở thành số chia hết cho cả 6 và 19
Ta có: \(\left\{{}\begin{matrix}a+55⋮6\\a+55⋮19\end{matrix}\right.\) ⇒ a + 55 \(\in\) BC(6; 19)
6 = 2.3; 19 = 19; BCNN(6; 19) = 2.3.19 = 114
⇒ BC(6; 19) = {0; 114; 228; 342;...;}
a \(\in\) { - 55; 59; 173;...;}
Vì a là số tự nhiên nhỏ nhất nên a = 59
a + 55 \(\in\) B(114)
⇒ a = 114.k - 55 (k ≥1; k \(\in\) N)
Bài 2:
Vì số đó chia 5 dư 1 chia 21 dư 3 nên khi số đó thêm vào 39 đơn vị thì trở thành số chia hết cho cả 5 và 21
Ta có: a + 39 ⋮ 5; a + 39 ⋮ 21 ⇒ a + 39 \(\in\) BC(5; 21)
5 = 5; 21 = 3.7 BCNN(5; 21) = 3.5.7 = 105
⇒BC(5; 21) = {0; 105; 210;...;}
a+ 39 \(\in\) {0; 105; 210;...;}
a \(\in\) {-39; 66; 171;...;}
Vì a là số tự nhiên nhỏ nhất nên a = 66
a + 39 ⋮ 105
⇒ a = 105.k - 39 (k ≥1; k \(\in\) N)
Gọi số cần tìm là n => (n - 1) chia hết cho 3, 4, 5 tức chia hết cho 3*4*5 = 60 (do 3, 4, 5 nguyên tố cùng nhau từng đôi một) => n - 1 = 60k => n = 60k + 1 chia hết cho 7, với k > 0.
Gọi r là số dư khi chia k cho 7 ta có k = 7m + r (1 ≤ r ≤ 6) => n = 420m + 60r + 1 chia hết cho 7. Dễ kiểm nghiệm là chỉ với r = 5 có (60r + 1) chia hết cho 7
=> n = 420m + 301
Số n nhỏ nhất ứng với m = 0 => min(n) = 301
Tìm STN nhỏ nhất biết số đó chia cho 2 dư 1,chia cho 3 dư 2, chia cho 4 dư 3, chia cho 5 dư 4.
Gọi số cần tìm là A. Vì A chia cho 2 dư 1 và A chia cho 5 dư 4 nên A + 1 đồng thời chia hết cho 2 và 5. Vậy chữ số tận cùng của A + 1 là 0. Hiển nhiên A +1 không thể có 1 chữ số. Nếu A + 1 có 2 chữ số thì có dạng x0. Vì x0 chia hết cho 3 nên x chỉ có thể là 3 ; 6 ; 9 ta có số 30 ; 60 ; 90. Trong 3 số đó chỉ có 60 là chia hết cho 4 .
Vậy SCT là : 60-1 =59
Đáp số: 59
số 22