Tìm đk để hệ pt sau có nghiệm
2x+\(\sqrt{y-1}\)=m
2y+\(\sqrt{x-1}\)=m
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải: ĐK: $x,y\geq 2$
HPT \(\Rightarrow \sqrt{x+1}-\sqrt{y+1}+(\sqrt{y-2}-\sqrt{x-2})=0\)
\(\Leftrightarrow (x-y).\left[\frac{1}{\sqrt{x+1}+\sqrt{y+1}}-\frac{1}{\sqrt{y-2}+\sqrt{x-2}}\right]=0\)
\(\Leftrightarrow x-y=0\) (do dễ thấy biểu thức trong ngoặc vuông luôn âm)
\(\Leftrightarrow x=y\)
Khi đó: $\sqrt{x+1}+\sqrt{x-2}=\sqrt{m}$
$\Leftrightarrow 2x-1+2\sqrt{(x+1)(x-2)}=m$
Để hpt có nghiệm thì pt trên có nghiệm
$\Leftrightarrow m\geq \min (2x-1+2\sqrt{(x+1)(x-2)})$
$\Leftrightarrow m\geq 2.2-1+2.0=3$
Vậy $m\geq 3$
Đặt \(\left\{{}\begin{matrix}\sqrt{7x+y}=a\ge0\\\sqrt{x+y}=b\ge0\end{matrix}\right.\) \(\Rightarrow x-y=\dfrac{a^2-4b^2}{3}\)
Hệ trở thành:
\(\left\{{}\begin{matrix}a+b=6\\b+\dfrac{a^2-4b^2}{3}=m\end{matrix}\right.\)
\(\Rightarrow6-a+\dfrac{a^2-4\left(6-a\right)^2}{3}=m\)
\(\Leftrightarrow-a^2+15a-42=m\)
Với \(0\le a\le6\Rightarrow-42\le-a^2+15a-42\le12\)
\(\Rightarrow-42\le m\le12\)
ĐK-1<=x ;y <= 3
(+) x < y
=> \(\sqrt{x+1}+\sqrt{3-y}<\sqrt{y+1}+\sqrt{3-x}=m\)
Vô lí
(+) x > y
=> \(\sqrt{x+1}+\sqrt{3-y}>\sqrt{y+1}+\sqrt{3-x}=m\)
=> vô lí
(+) với x = y
=> \(\sqrt{x+1}+\sqrt{3-y}=\sqrt{y+1}+\sqrt{3-x}=m\left(TM\right)\)
Thay x = y vào pt (1) ta có :
\(\sqrt{x+1}+\sqrt{3-x}=m\)
đến đây thì chịu
1) \(\Leftrightarrow4-4\sqrt{\dfrac{x+2}{x-3}}=x+7\)
\(\Leftrightarrow-4\sqrt{\dfrac{x+2}{x-3}}=x+3\)
\(\Leftrightarrow16\dfrac{x+2}{x-3}=x^2+6x+9\)
\(\Leftrightarrow16x+3=x^3+6x^2+9x-3x^2-18x-27\)
\(\Leftrightarrow x^3+3x^2-25x-59=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=4,79\\x=-2,2\\x=-5,58\end{matrix}\right.\)
Vậy tập nghiệm....
ĐK: \(x,y\ge0\)
\(\left\{{}\begin{matrix}\sqrt{x}+\sqrt{y}=1\\x\sqrt{x}+y\sqrt{y}=1-3m\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x}+\sqrt{y}=1\\\left(\sqrt{x}+\sqrt{y}\right)\left(x+y-\sqrt{xy}\right)=1-3m\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x}+\sqrt{y}=1\\\left(\sqrt{x}+\sqrt{y}\right)^2-3\sqrt{xy}=1-3m\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x}+\sqrt{y}=1\\\sqrt{xy}=m\end{matrix}\right.\)
Đặt \(\left\{{}\begin{matrix}\sqrt{x}=a\\\sqrt{y}=b\end{matrix}\right.\left(a,b\ge0\right)\)
\(\Rightarrow a,b\) là nghiệm phương trình \(t^2-t+m=0\left(1\right)\)
Yêu cầu bài toán thỏa mãn khi phương trình \(\left(1\right)\) có nghiệm không âm
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta=1-4m\ge0\\x_1+x_2\ge0\\x_1x_2\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m\le\dfrac{1}{4}\\1\ge0\\m\ge0\end{matrix}\right.\Leftrightarrow0\le m\le\dfrac{1}{4}\)
1/ \(x+\sqrt{x+\frac{1}{2}+\sqrt{x+\frac{1}{4}}}=x+\sqrt{\left(x+\frac{1}{4}\right)+\sqrt{x+\frac{1}{4}}+\frac{1}{4}}\)
\(=x+\sqrt{\left(\sqrt{x+\frac{1}{4}}+\frac{1}{2}\right)^2}=x+\left|\sqrt{x+\frac{1}{4}}+\frac{1}{2}\right|=\left(x+\frac{1}{4}\right)+\sqrt{x+\frac{1}{4}}+\frac{1}{4}\)
\(=\left(\sqrt{x+\frac{1}{4}}+\frac{1}{2}\right)^2\)
\(\Rightarrow m=\left(\sqrt{x+\frac{1}{4}}+\frac{1}{2}\right)^2\)
Để pt trên có nghiệm thì \(\hept{\begin{cases}m>0\\\sqrt{m}-\frac{1}{2}\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}m>0\\m\ge\frac{1}{4}\end{cases}}\Leftrightarrow m\ge\frac{1}{4}\)
Vậy với \(m\ge\frac{1}{4}\) thì pt trên có nghiệm.
Phương trình trên chỉ có một nghiệm thôi nhé, đó là \(x=m-\sqrt{m}\) với \(m\ge\frac{1}{4}\)