K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
26 tháng 8 2021

Lời giải: ĐK: $x,y\geq 2$
HPT \(\Rightarrow \sqrt{x+1}-\sqrt{y+1}+(\sqrt{y-2}-\sqrt{x-2})=0\)

\(\Leftrightarrow (x-y).\left[\frac{1}{\sqrt{x+1}+\sqrt{y+1}}-\frac{1}{\sqrt{y-2}+\sqrt{x-2}}\right]=0\)

\(\Leftrightarrow x-y=0\) (do dễ thấy biểu thức trong ngoặc vuông luôn âm)

\(\Leftrightarrow x=y\)

Khi đó: $\sqrt{x+1}+\sqrt{x-2}=\sqrt{m}$
$\Leftrightarrow 2x-1+2\sqrt{(x+1)(x-2)}=m$

Để hpt có nghiệm thì pt trên có nghiệm 

$\Leftrightarrow m\geq \min (2x-1+2\sqrt{(x+1)(x-2)})$

$\Leftrightarrow m\geq 2.2-1+2.0=3$

Vậy $m\geq 3$

26 tháng 8 2021

Chị Akai Haruma ơi

NV
13 tháng 12 2021

Đặt \(\left\{{}\begin{matrix}\sqrt{7x+y}=a\ge0\\\sqrt{x+y}=b\ge0\end{matrix}\right.\) \(\Rightarrow x-y=\dfrac{a^2-4b^2}{3}\)

Hệ trở thành:

\(\left\{{}\begin{matrix}a+b=6\\b+\dfrac{a^2-4b^2}{3}=m\end{matrix}\right.\)

\(\Rightarrow6-a+\dfrac{a^2-4\left(6-a\right)^2}{3}=m\)

\(\Leftrightarrow-a^2+15a-42=m\)

Với \(0\le a\le6\Rightarrow-42\le-a^2+15a-42\le12\)

\(\Rightarrow-42\le m\le12\)

27 tháng 9 2015

ĐK-1<=x ;y <= 3 

(+)  x < y 

=> \(\sqrt{x+1}+\sqrt{3-y}<\sqrt{y+1}+\sqrt{3-x}=m\)

Vô lí 

(+) x > y 

=> \(\sqrt{x+1}+\sqrt{3-y}>\sqrt{y+1}+\sqrt{3-x}=m\)

=> vô lí 

(+)  với  x = y 

=> \(\sqrt{x+1}+\sqrt{3-y}=\sqrt{y+1}+\sqrt{3-x}=m\left(TM\right)\)

Thay x = y vào pt (1) ta có :

\(\sqrt{x+1}+\sqrt{3-x}=m\)

đến đây thì chịu 

27 tháng 9 2015

Ngọc Vĩ vk ck thì đừng khách sáo -_- 

11 tháng 3 2021

1) \(\Leftrightarrow4-4\sqrt{\dfrac{x+2}{x-3}}=x+7\)

\(\Leftrightarrow-4\sqrt{\dfrac{x+2}{x-3}}=x+3\)

\(\Leftrightarrow16\dfrac{x+2}{x-3}=x^2+6x+9\)

\(\Leftrightarrow16x+3=x^3+6x^2+9x-3x^2-18x-27\)

\(\Leftrightarrow x^3+3x^2-25x-59=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=4,79\\x=-2,2\\x=-5,58\end{matrix}\right.\)

Vậy tập nghiệm....

 

11 tháng 3 2021

-Nếu c1 bạn bình phương hai vế thì vế trái là HĐT vẫn thiếu B^2

-Bạn chưa đặt đk gì lsao tương đương như thế được

 

18 tháng 12 2020

ĐK: \(x,y\ge0\)

\(\left\{{}\begin{matrix}\sqrt{x}+\sqrt{y}=1\\x\sqrt{x}+y\sqrt{y}=1-3m\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x}+\sqrt{y}=1\\\left(\sqrt{x}+\sqrt{y}\right)\left(x+y-\sqrt{xy}\right)=1-3m\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x}+\sqrt{y}=1\\\left(\sqrt{x}+\sqrt{y}\right)^2-3\sqrt{xy}=1-3m\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x}+\sqrt{y}=1\\\sqrt{xy}=m\end{matrix}\right.\)

Đặt \(\left\{{}\begin{matrix}\sqrt{x}=a\\\sqrt{y}=b\end{matrix}\right.\left(a,b\ge0\right)\)

\(\Rightarrow a,b\) là nghiệm phương trình \(t^2-t+m=0\left(1\right)\)

Yêu cầu bài toán thỏa mãn khi phương trình \(\left(1\right)\) có nghiệm không âm

\(\Leftrightarrow\left\{{}\begin{matrix}\Delta=1-4m\ge0\\x_1+x_2\ge0\\x_1x_2\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m\le\dfrac{1}{4}\\1\ge0\\m\ge0\end{matrix}\right.\Leftrightarrow0\le m\le\dfrac{1}{4}\)

15 tháng 8 2018

đây là toán lớp 1 hả

15 tháng 8 2018

thế này thì 5 năm sau chắc hs lp 1 cng ko nghĩ ra mất

3 tháng 12 2016

1/ \(x+\sqrt{x+\frac{1}{2}+\sqrt{x+\frac{1}{4}}}=x+\sqrt{\left(x+\frac{1}{4}\right)+\sqrt{x+\frac{1}{4}}+\frac{1}{4}}\)

\(=x+\sqrt{\left(\sqrt{x+\frac{1}{4}}+\frac{1}{2}\right)^2}=x+\left|\sqrt{x+\frac{1}{4}}+\frac{1}{2}\right|=\left(x+\frac{1}{4}\right)+\sqrt{x+\frac{1}{4}}+\frac{1}{4}\)

\(=\left(\sqrt{x+\frac{1}{4}}+\frac{1}{2}\right)^2\)

\(\Rightarrow m=\left(\sqrt{x+\frac{1}{4}}+\frac{1}{2}\right)^2\)

Để pt trên có nghiệm thì \(\hept{\begin{cases}m>0\\\sqrt{m}-\frac{1}{2}\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}m>0\\m\ge\frac{1}{4}\end{cases}}\Leftrightarrow m\ge\frac{1}{4}\)

Vậy với \(m\ge\frac{1}{4}\) thì pt trên có nghiệm.

Phương trình trên chỉ có một nghiệm thôi nhé, đó là \(x=m-\sqrt{m}\) với \(m\ge\frac{1}{4}\)

3 tháng 12 2016

cậu lm đc bài 2 câu a ko.. mk còn mỗi câu đấy