\(\sqrt{y-1}\)=m

2y+\(\...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 1 2019

Bài 1 : dùng ĐK chặn x;y

Bài 2: pt trùng phương đặt x8 = y rồi dùng Vi-ét cho pt 1 rồi Vi-ét cho pt 2

Bài 3: rút x;y theo m rồi quy P về pt chỉ có ẩn m -> tổng bình phương cộng vs 1 hằng số

Bài 4: Đi ngủ .VV

19 tháng 1 2019

Cách chặn x ; y của a khó quá :( nghĩ mãi ko ra , đành làm cách khác

\(1,ĐKXĐ:x\ge-y\)

Từ hệ \(\Rightarrow\hept{\begin{cases}\sqrt{x^2+x+2}=y+\sqrt{x+y}\\x+1=y+\sqrt{x+y}\end{cases}}\)

        \(\Rightarrow\sqrt{x^2+x+2}=x+1\)

        \(\Leftrightarrow\hept{\begin{cases}x\ge-1\\x^2+x+2=x^2+2x+1\end{cases}}\)

       \(\Leftrightarrow x=1\)

Thế vào hệ có \(\sqrt{y+1}=2-y\)

          \(\Leftrightarrow\hept{\begin{cases}-1\le y\le2\\y+1=y^2-4y+4\end{cases}}\)

         \(\Leftrightarrow\hept{\begin{cases}-1\le y\le2\\y^2-5y+3=0\end{cases}}\)

         \(\Leftrightarrow y=\frac{5-\sqrt{13}}{2}\)

Vậy hệ có nghiệm \(\hept{\begin{cases}x=1\\y=\frac{5-\sqrt{13}}{2}\end{cases}}\)

27 tháng 9 2015

ĐK-1<=x ;y <= 3 

(+)  x < y 

=> \(\sqrt{x+1}+\sqrt{3-y}<\sqrt{y+1}+\sqrt{3-x}=m\)

Vô lí 

(+) x > y 

=> \(\sqrt{x+1}+\sqrt{3-y}>\sqrt{y+1}+\sqrt{3-x}=m\)

=> vô lí 

(+)  với  x = y 

=> \(\sqrt{x+1}+\sqrt{3-y}=\sqrt{y+1}+\sqrt{3-x}=m\left(TM\right)\)

Thay x = y vào pt (1) ta có :

\(\sqrt{x+1}+\sqrt{3-x}=m\)

đến đây thì chịu 

27 tháng 9 2015

Ngọc Vĩ vk ck thì đừng khách sáo -_- 

20 tháng 2 2019

Bài 2: Để hpt có nghiệm duy nhất thì \(\dfrac{m}{1}\ne\dfrac{3}{-2}\Leftrightarrow\)\(m\ne\dfrac{-3}{2}\)

Bài 1: \(\left\{{}\begin{matrix}mx+y=5\left(1\right)\\2x-y=-2\left(2\right)\end{matrix}\right.\)

Lấy (1) cộng (2), ta được: \(\left(m+2\right)x=3\Rightarrow x=\dfrac{3}{m+2}\)

Thay vào (2): \(\dfrac{6}{m+2}-y=-2\)\(\Rightarrow y=\dfrac{6+2m+4}{m+2}=\dfrac{2m+10}{m+2}\)

x0+y0=1\(\Rightarrow\dfrac{3}{m+2}+\dfrac{2m+10}{m+2}=\dfrac{2m+13}{m+2}=1\)(ĐK: \(m\ne-2\))

\(\Rightarrow2m+13=m+2\Leftrightarrow m=-11\left(TM\right)\)

Bài 3: Thay \(x=\sqrt{2};y=4-\sqrt{2}\) vào đths y=ax+b:

\(\sqrt{2}a+b=4-\sqrt{2}\left(1\right)\)

Thay x=2; \(y=\sqrt{2}\) vào đths y=ax+b:

\(2a+b=\sqrt{2}\left(2\right)\)

Từ (1) và (2), ta có hpt: \(\left\{{}\begin{matrix}\sqrt{2}a+b=4-\sqrt{2}\\2a+b=\sqrt{2}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}a=-2\\b=\sqrt{2}+4\end{matrix}\right.\)

Vậy đths \(y=-2x+4+\sqrt{2}\) đi qua điểm \(\left(\sqrt{2};4-\sqrt{2}\right)\) và \(\left(2;\sqrt{2}\right).\)

3 tháng 12 2016

1/ \(x+\sqrt{x+\frac{1}{2}+\sqrt{x+\frac{1}{4}}}=x+\sqrt{\left(x+\frac{1}{4}\right)+\sqrt{x+\frac{1}{4}}+\frac{1}{4}}\)

\(=x+\sqrt{\left(\sqrt{x+\frac{1}{4}}+\frac{1}{2}\right)^2}=x+\left|\sqrt{x+\frac{1}{4}}+\frac{1}{2}\right|=\left(x+\frac{1}{4}\right)+\sqrt{x+\frac{1}{4}}+\frac{1}{4}\)

\(=\left(\sqrt{x+\frac{1}{4}}+\frac{1}{2}\right)^2\)

\(\Rightarrow m=\left(\sqrt{x+\frac{1}{4}}+\frac{1}{2}\right)^2\)

Để pt trên có nghiệm thì \(\hept{\begin{cases}m>0\\\sqrt{m}-\frac{1}{2}\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}m>0\\m\ge\frac{1}{4}\end{cases}}\Leftrightarrow m\ge\frac{1}{4}\)

Vậy với \(m\ge\frac{1}{4}\) thì pt trên có nghiệm.

Phương trình trên chỉ có một nghiệm thôi nhé, đó là \(x=m-\sqrt{m}\) với \(m\ge\frac{1}{4}\)

3 tháng 12 2016

cậu lm đc bài 2 câu a ko.. mk còn mỗi câu đấy 

26 tháng 8 2017

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

26 tháng 8 2017

bạn  giải sai rùi

17 tháng 1 2016

<=>2x\(\sqrt{x^2+4}\)+2\(\sqrt{x^2+4}\)=x\(^2\)-x-2

=>2x\(\sqrt{x^2+4}\)+2\(\sqrt{x^2+4}\)-x2+x+2=0

=>(x+1)(2\(\sqrt{x^2+4}\)-x+2)=0

=>2\(\sqrt{x^2+4}\)-x+2=0

=>x=-1

17 tháng 1 2016

thắng bạn giải cho tiết được ko

25 tháng 3 2020

Bài 1 : https://hoc24.vn/hoi-dap/question/944344.html

Bài 2 : https://hoc24.vn/hoi-dap/question/944356.html

Bài 3 :

- Xét phương trình hoành độ giao điểm (d), (d2) ta được :

\(2x+1=x+2\)

=> \(2x-x=2-1\)

=> \(x=1\)

- Thay x =1 vào phương trình (d) ta được : \(y=2+1=3\)

- Thay x = 1, y = 3 vào phương trình (d1) ta được :

\(3.2+1=7\) ( luôn đúng )

=> x = 1, y = 3 là nghiệm của phương trình .

Vậy 3 đường thẳng trên đồng quy tại 1 điểm ( 1; 3 )

Bài 4 :

- Để phương trình có nghiệm duy nhất thì : \(\frac{3}{m-1}\ne\frac{m}{2}\)

=> \(m\left(m-1\right)\ne6\)

=> \(m^2-m-6\ne0\)

=> \(\left(m-\frac{1}{2}\right)^2-\frac{25}{4}\ne0\)

=> \(\left[{}\begin{matrix}m-\frac{1}{2}\ne\sqrt{\frac{25}{4}}\\m-\frac{1}{2}\ne-\sqrt{\frac{25}{4}}\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}m\ne\sqrt{\frac{25}{4}}+\frac{1}{2}\\m\ne-\sqrt{\frac{25}{4}}+\frac{1}{2}\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}m\ne3\\m\ne-2\end{matrix}\right.\)

Vậy để hệ phương trình có duy nhất 1 nghiệm thì \(m\ne-2,m\ne3\)