xác định a,b để x\(^4\)+ ax +b chia hết cho x\(^2\)-4
giúp mk nha mn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x3 + 127127 = x3 + (1313)3 = (x + 1313)(x2 – x . 1313+ (1313)2)
=(x + 1313)(x2 – 1313x + 1919)
b) (a + b)3 – (a - b)3
= [(a + b) – (a – b)][(a + b)2 + (a + b) . (a – b) + (a – b)2]
= (a + b – a + b)(a2 + 2ab + b2 + a2 – b2 + a2 – 2ab + b2)
= 2b . (3a3 + b2)
c) (a + b)3 + (a – b)3 = [(a + b) + (a – b)][(a + b)2 – (a + b)(a – b) + (a – b)2]
= (a + b + a – b)(a2 + 2ab + b2 – a2 +b2 + a2 – 2ab + b2]
= 2a . (a2 + 3b2)
d) 8x3 + 12x2y + 6xy2 + y3 = (2x)3 + 3 . (2x)2 . y +3 . 2x . y + y3 = (2x + y)3
e) - x3 + 9x2 – 27x + 27 = 27 – 27x + 9x2 – x3 = 33 – 3 . 32 . x + 3 . 3 . x2 – x3 = (3 – x)3
=x^4+4x^2+4-4x^2
=(x^2+2)^2-4x^2
=(x^2+2-2x)(x^2+2+2x)
Để x^4+4 chia hết cho x^2+ax+b thì
(x^2-2x+2)(x^2+2x+2) chia hết cho x^2+ax+b
hôm nay bọn mik vừa hok về chưa thấm đâu vô đâu nên kg giúp đc xin lỗi nhe!
Xác định a b sao cho
a, ( x^4 + ax + b) chia hết cho ( x^2 - 4)
b,(x^4 + 4) chia hết cho (x^2 + ax +b)
a) Đặt \(f\left(x\right)=x^4+ax+b\text{⋮}x^2-4=\left(x+2\right)\left(x-2\right)\)
Áp dụng định lý Bê du có :
\(f\left(2\right)=f\left(-2\right)=0\)
\(\Rightarrow2^4+\left(-2\right).a+b=\left(-2\right)^4+2a+b\)
\(\Leftrightarrow a=0\)
Do đó \(\hept{\begin{cases}a=0\\b\in R\end{cases}}\)
Vậy ...
b) Mình không làm được :) Mình sẽ hỏi cô mình và trả lời cho bạn sau.
a/ Đặt \(f\left(x\right)=x^4+ax+b=\left(x-2\right)\left(x+2\right).Q\left(x\right)\)với Q(x) là đa thức thương
Suy ra : \(\hept{\begin{cases}f\left(2\right)=16+2a+b=0\\f\left(-2\right)=16-2a+b=0\end{cases}}\) \(\Rightarrow\hept{\begin{cases}2a+b=-16\\-2a+b=-16\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}a=0\\b=-16\end{cases}}\)
b/ Ta có \(x^4+4=\left(x^4+4x^2+4\right)-4x^2=\left(x^2+2\right)^2-\left(2x\right)^2=\left(x^2+2x+2\right)\left(x^2-2x+2\right)\)
Vậy \(x^2+ax+b\) sẽ có một trong hai dạng : \(x^2+ax+b=x^2+2x+2\Rightarrow\hept{\begin{cases}a=2\\b=2\end{cases}}\)
hoặc \(x^2+ax+b=x^2-2x+2\Rightarrow\hept{\begin{cases}a=-2\\b=2\end{cases}}\)
Chưa học Bezout thì ta qua cách này:
Ta có: \(x^4+ax+b\)
\(=x^4-4x^2+4x^2-16+ax+b+16\)
\(=x^2\left(x^2-4\right)+4\left(x^2-4\right)+ax+b+16\)
Do \(x^2\left(x^2-4\right)+4\left(x^2-4\right)\) chia hết cho \(x^2-4\)
\(\Rightarrow ax+b+16=0\)
\(\Rightarrow ax=0\) và \(b+16=0\)
\(\Rightarrow a=0\) và \(b=-16\)
@Trần Việt Linh bạn ơi giúp mình với. Mình cần gấp lắm