Cho Δ ABC có B = C. Kẻ AH vuông góc với BC (H \(\in\) BC)
a) Chứng minh BAH = HAC
b) Kẻ Ax là tia phân giác của góc ngoài ở đỉnh A. Chứng minh Ax // BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: Ta có: ΔABC cân tại A
mà AH là đường cao
nên AH là đường phân giác
a/ tam giác BAH và tam giác CAH có
AB=AC ( tam giác ABC cân vì góc B = góc C)
góc BHA = góc CHA = 90 độ
góc B = góc C
=> tam giác BAH = tam giác CAH (CH - GN)
=>góc BAH = góc HAC
a: góc B+góc C=90 độ
góc HAC+góc C=90 độ
=>góc B=góc HAC
=>góc C=góc BAH
b: góc CAD+góc BAD=90 độ
góc CDA+góc HAD=90 độ
mà góc BAD=góc HAD
nên góc CAD=góc CDA
c: ΔCAD cân tại C có CK là phân giác
nên CK vuông góc AD
a: Ta có: ΔABC cân tại A
mà AH là đường cao
nên AH là tia phân giác
hay \(\widehat{BAH}=\widehat{CAH}\)
b: \(\widehat{xAC}=\dfrac{180^0-\widehat{BAC}}{2}\)
\(\widehat{ACB}=\dfrac{180^0-\widehat{BAC}}{2}\)
Do đó: \(\widehat{xAC}=\widehat{ACB}\)
mà hai góc này ở vị trí so le trong
nên Ax//BC