Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải thích các bước giải:
a, ΔBAD có BA = BD
⇒ ΔBAD cân ở B
⇒ (đpcm)
b, Ta có:
ΔAHD vuông ở H ⇒
ΔABC vuông ở A ⇒
mà
⇒
⇒ AD là tia phân giác của (đpcm)
c, Xét 2 tam giác vuông ΔHAD và ΔKAD có:
AH chung;
⇒ ΔHAD = ΔKAD (cạnh huyền - góc nhọn)
⇒ AH = AK (đpcm)
d, AB + AC = BD + AK + KC = BD + AH + KC < BD + AH + DC = BC + AH
Vậy AB + AC < BC + AH
Giải thích các bước giải:
a, ΔBAD có BA = BD
⇒ ΔBAD cân ở B
⇒ (đpcm)
b, Ta có:
ΔAHD vuông ở H ⇒
ΔABC vuông ở A ⇒
mà
⇒
⇒ AD là tia phân giác của (đpcm)
c, Xét 2 tam giác vuông ΔHAD và ΔKAD có:
AH chung;
⇒ ΔHAD = ΔKAD (cạnh huyền - góc nhọn)
⇒ AH = AK (đpcm)
d, AB + AC = BD + AK + KC = BD + AH + KC < BD + AH + DC = BC + AH
Vậy AB + AC < BC + AH
a) xét tam giác ABD và tam giác ACD có
AB=AC,AD là cạnh chung góc BAD= góc DAC
vậy tam giác ABD=tam giác ACD(C.g.c)
Suy ra gócADB=gócADC=1/2BDC=1/2*180=90
Hay AD vuông góc với BC
+ΔABD vuông tại A => ˆABD+ˆADB=90
Mà ˆADB = ˆCDE đối đỉnh
=>ˆABD^+ˆCDE = 90 (1)
+ΔCBE vuông tại C =>ˆCBE+ˆCEB=90
Mà ˆCBE = ˆABD ( BD là phân giác)
=> ˆCEB+ˆABD = 90 (2)
(1)(2) => ˆCEB =ˆCDE hay ˆCED=ˆCDE ( dpcm)
Hiệu của hai số là 4. Nếu tăng một số gấp ba lần, giữ nguyên số kia thì hiệu của chúng
bằng 60. Tìm hai số đó
: Xét ΔCAB có
M là trung điểm của AB
ME//AB
Do đó: E là trung điểm của AC
Xét tứ giác AMCN có
E là trung điểm của đường chéo AC
E là trung điểm của đường chéo MN
Do đó: AMCN là hình bình hành
mà MN⊥AC
nên AMCN là hình thoi
+) Ta có BD là tia phân giác của góc ABC nên: ∠(ABD) = ∠(DBC) (1)
+ Lại có: ∠(ADB)= ∠(CDE) ( hai góc đối đỉnh) (2)
+) Tam giác ABD vuông tại A nên:
∠ (ABD) + ∠(ADB) = 90° (tính chất tam giác vuông) (3)
Từ (1); (2) và (3) suy ra: ∠ (DBC) + ∠(CDE) = 90° (4)
+) Tam giác BCE vuông tại C nên:
∠ (DBC) + ∠(BEC) = 90° (tính chất tam giác vuông) (5)
Từ (4) và (5) suy ra : ∠ (CDE) = ∠(BEC)
Vậy tam giác CDE có hai góc bằng nhau.
- Ta có: \(\widehat{ABE}+\widehat{CAE}=90^0\) (AB⊥AC tại A).
\(\widehat{AEH}+\widehat{HAE}=90^0\) (△AHE vuông tại H).
Mà \(\widehat{CAE}=\widehat{HAE}\) (AE là phân giác của \(\widehat{HAC}\)).
=>\(\widehat{ABE}=\widehat{AEH}\).
=>△ABE cân tại B.
=>\(AB=BE\).
- Ta có: \(\widehat{DAC}+\widehat{BAD}=90^0\) (AB⊥AC tại A).
\(\widehat{HAD}+\widehat{ADH}=90^0\) (△AHE vuông tại H).
Mà \(\widehat{BAD}=\widehat{HAD}\) (AD là phân giác của \(\widehat{HAB}\)).
=>\(\widehat{DAC}=\widehat{ADH}\).
=>△ACD cân tại C.
=>\(AC=CD\).
- Xét △ABC vuông tại A có:
\(BC^2=AB^2+AC^2\) (định lí Py-ta-go).
=>\(BC^2=5^2+12^2\).
=>\(BC^2=169\).
=>\(BC=13\) (cm).
\(AB+AC-BC=BE+CD-BC=BE+CD-BE-CE=CD-CE=DE\)=>\(DE=5+12-13=4\) (cm).
a/ tam giác BAH và tam giác CAH có
AB=AC ( tam giác ABC cân vì góc B = góc C)
góc BHA = góc CHA = 90 độ
góc B = góc C
=> tam giác BAH = tam giác CAH (CH - GN)
=>góc BAH = góc HAC