Cho p và 10p +1 đều là các số nguyên tố. Chứng minh rằng 5p +1 là hợp số
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
p nguyên tố > 3 => 10p không chia hết cho 3, gt có 10p + 1 không chia hết cho 3
10p, 10p+1, 10p+2 là 3 số nguyên liên tiếp nên phải có 1 số chia hết cho 3
Từ các lí luận trên => 10p+2 = 2(5p+1) chia hết cho 3 (*)
Mà 2 và 3 đều là những số nguêyn tố nên từ (*) => 5p+1 chia hết cho 3
mặt khác p > 3 và nguyên tố nên p là số lẻ => 5p+1 là số chẵn => chia hết cho 2
Vậy 5p+1 chia hết cho 2 và 3 là 2 số nguyên tố cùng nhau
=> 5p + 1 chia hết cho 2.3 = 6
=> 5p + 1 là hợp số
Lời giải:
Vì $p$ là snt lớn hơn $3$ nên $p$ không chia hết cho $3$. Do đó $p$ có dạng $3k+1$ hoặc $3k+2$ với $k$ tự nhiên.
Nếu $p=3k+1$ thì $10p-1=10(3k+1)-1=30k+9\vdots 9$ và $10p-1>3$ nên không thể là số nguyên tố (trái giả thiết)
Do đó: $p=3k+2$
Khi đó: $5p-1=5(3k+2)-1=15k+9\vdots 3$ và $5p-1>3$ nên $5p-1$ là hợp số (đpcm)
Vì p >3 nên p sẽ có 1 trong 2 dạng: 3k+1 hoặc 3k+2 (k thuộc N*)
+ Nếu p=3k+1 thì 10p+1=30k+11 => 5p+1=15k+6 là hợp số.
+ Nếu p=3k+2 thì 10p+1=30k+21 => 5p+1=15k+11 là hợp số.
vì p > 3 nên p không là 2 hoặc 3
các số nguyên tố lớn hơn 3 phải là số tự nhiên lẻ
=> 5p là số lẻ
Vậy 5p + 1 là số chẵn ( hợp số )
Xét 3 số tự nhiên liên tiếp: 10.p;10+1;2.(5p+1)
=> Có 1 số chia hết cho 3; một số chia hết cho 2
Vì p và 10p+1 là 2 sồ nguyên tố (p>3)
=>p và 10p+1 ko chia hết cho 3 và 2. Vì 10 và 3 nguyên tố cùng nhau; 10 chia hết cho 2
=>10p và 10p+1 ko chia hết cho 3; 10p chia hết cho 2; 10p+1 ko chia hết cho 2
=>10p+2 chia hết cho 3. Vì 2 chia hết cho 2=>10p+2 chia hết cho 2
Vì 2 và 3 nguyên tố cùng nhau =>5p+1 chia hết cho cả 3 và 2
Vậy 5p+1 chia hết cho 6 (đpcm)
nhấn đúng nha
p nguyên tố > 3
=> 10p không chia hết cho 3, gt có 10p+1 không chia hết cho 3
10p, 10p+1, 10p+2 là 3 số nguyên liên tiếp nên phải có 1 số chia hết cho 3
Từ các lí luận trên => 10p+2 = 2(5p+1) chia hết cho 3 (*)
Mà 2 và 3 đều là những số nguyên tố nên từ (*) => 5p+1 chia hết cho 3
Mặt khác p > 3 và nguyên tố nên p là số lẻ => 5p+1 là số chẵn => chia hết cho 2
Vậy 5p+1 chia hết cho 2 và 3 là 2 số nguyên tố cùng nhau
=> 5p+1 chia hết cho 2*3 = 6
Lời giải:
\(\bullet\)Nếu $p=2$ thì \(10p+1\not\in \mathbb{P}\) (loại)
\(\bullet\) Nếu \(p=3\Rightarrow 10p+1\in\mathbb{P}\). Cùng lúc đó \(5p+1=16\) là hợp số.
\(\bullet\) Nếu \(p>3\Rightarrow p\not\vdots 3\). Xét 2 TH:
TH1: \(p=3k+1\)
Khi đó \(5p+1=5(3k+1)+1=15k+6\vdots 3\) . Mà \(15k+6>3\) nên là hợp số.
TH2: \(p=3k+2\Rightarrow 10p+1=30k+21\vdots 3\), lớn hơn $3$ nên không thể là số nguyên tố (trái với đkđb)
Từ các trường hợp trên, ta có đpcm.