2xy − y + 2x = 13
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2xy+y=13-2x\)
\(\Rightarrow2xy+y+2x=13\)
\(\Rightarrow2x\left(y+1\right)+\left(y+1\right)=14\)
\(\Rightarrow\left(y+1\right)\left(2x+1\right)=14\)
Vì \(x,y\in Z\Rightarrow\left(y+1\right)\left(2x+1\right)\in Z\Rightarrow\left(y+1\right)\left(2x+1\right)\inƯ\left(14\right)=\left\{\pm1;\pm2;\pm7;\pm14\right\}\)
Xét các trường hợp, lập bảng, kết luận.
Đến đây bạn tự làm nhé.
\(a)xy+3x-2y=11\)
\(\Leftrightarrow xy+3x-2y-6=5\)
\(\Leftrightarrow x\left(y+3\right)-2\left(y+3\right)=5\)
\(\Leftrightarrow\left(y+3\right)\left(x-2\right)=5\)
\(\Leftrightarrow\hept{\begin{cases}y+3=-1\\x-2=-5\end{cases}}\Leftrightarrow\hept{\begin{cases}y=-4\\x=-3\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y+3=1\\x-2=5\end{cases}}\Leftrightarrow\hept{\begin{cases}y=-2\\x=7\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y+3=-5\\x-2=-1\end{cases}}\Leftrightarrow\hept{\begin{cases}y=-8\\x=1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y+3=5\\x-2=1\end{cases}}\Leftrightarrow\hept{\begin{cases}y=2\\x=3\end{cases}}\)
\(b)2x^2-2xy+x-y=12\)
\(\Leftrightarrow2x\left(x-y\right)+\left(x-y\right)=12\)
\(\Leftrightarrow\left(x-y\right)\left(2x+1\right)=12\)
\(\Rightarrow\left(x-y\right);\left(2x+1\right)\inƯ\left(12\right)\)
\(\RightarrowƯ\left(12\right)\in\left\{-1;1;-2;2;-3;3;-4;4;-6;6;-12;12\right\}\)
Vì 2x+1 luôn lẻ
\(\Rightarrow2x+1\in\left\{-1;1;-3;3\right\}\)
\(\Leftrightarrow\hept{\begin{cases}2x+1=-1\\x-y=-12\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-1\\y=11\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2x+1=1\\x-y=12\end{cases}}\Leftrightarrow\hept{\begin{cases}x=0\\y=-12\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2x+1=-3\\x-y=-4\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-2\\y=2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2x+1=3\\x-y=4\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=-3\end{cases}}\)
Bài giải
Ta có :
\(2x+2xy-9x=13\)
\(x\left(2+2y-9\right)=13\)
\(x\left(2y-7\right)=13\)
\(\Rightarrow\text{ }\) \(x\text{ ; }\left(2y-7\right)\inƯ\left(13\right)\)
Ta có bảng :
x | - 1 | 1 | - 13 | 13 |
2y - 7 | - 13 | 13 | - 1 | 1 |
y | - 3 | 10 | 3 | 4 |
\(\Rightarrow\text{ }\left(x\text{ ; }y\right)=\left(-13\text{ ; }3\right),\left(13\text{ ; }10\right),\left(-1\text{ ; }3\right),\left(1\text{ ; }4\right)\)
a: =>2xy+y=7
=>(2x+1)*y=7
=>(2x+1;y) thuộc {(1;7); (7;1); (-1;-7); (-7;-1)}
=>(x,y) thuộc {(0;7); (3;1); (-1;-7); (-4;-1)}
b: =>(2x+1)^2+(y+1)^2=179-169=10
=>((2x+1)^2;(y+1)^2) thuộc {(1;9); (9;1)}
TH1: (2x+1)^2=1 và (y+1)^2=9
=>\(\left\{{}\begin{matrix}2x+1\in\left\{1;-1\right\}\\y+1\in\left\{3;-3\right\}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\in\left\{0;-1\right\}\\y\in\left\{2;-4\right\}\end{matrix}\right.\)
TH2: (2x+1)^2=9 và (y+1)^2=1
=>\(\left\{{}\begin{matrix}2x+1\in\left\{3;-3\right\}\\y+1\in\left\{1;-1\right\}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\in\left\{1;-2\right\}\\y\in\left\{0;-2\right\}\end{matrix}\right.\)
a) \(\Leftrightarrow4x^2+2y^2+4xy-20x-8y+26=0\)
\(\Leftrightarrow4x^2+4x\left(y-5\right)+\left(y-5\right)^2-\left(y-5\right)^2+2y^2-8y+26=0\)
\(\Leftrightarrow\left(2x+y-5\right)^2+y^2+2y+1=0\)
\(\Leftrightarrow\left(2x+y-5\right)^2+\left(y+1\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x+y-5=0\\y+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=-1\end{matrix}\right.\) ( TM )
b) \(\Leftrightarrow\left(x^2-4x+4\right)+\left(y^2+6y+9\right)+\left(z^2-2z+1\right)=0\)
\(\Leftrightarrow\left(x-2\right)^2+\left(y+3\right)^2+\left(z-1\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\y+3=0\\z-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-3\\z=1\end{matrix}\right.\) ( TM )
c) \(\Leftrightarrow\left(x^2+y^2+z^2+2xy+2yz+2xz\right)+\left(x^2+2x+1\right)+\left(z^2-4z+4\right)=0\)
\(\Leftrightarrow\left(x+y+z\right)^2+\left(x+1\right)^2+\left(z-2\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+y+z=0\\x+1=0\\z-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=-1\\z=2\end{matrix}\right.\) ( TM )
\(A=x^2-4xy+2x-4y+3+4y^2\)
\(A=x^2-2.2xy+\left(2y\right)^2+2x-4y+3\)
\(A=\left(x-2y\right)^2-2.\left(x-2y\right)+1+2\)
\(A=\left(x-2y-1\right)^2+2\ge2\)
Vậy GTNN của A=2.
2xy - y + 2x = 13
=> (2xy + 2x) - y - 1 = 12
=> 2x(y + 1) - (y + 1) = 12
=> (y + 1)(2x - 1) = 12
Tiếp theo vẽ bảng, chia trường hợp nhé bạn ^^ mình gợi ý đến đây chắc là bạn tự làm được rồi =))