Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2xy+y=13-2x\)
\(\Rightarrow2xy+y+2x=13\)
\(\Rightarrow2x\left(y+1\right)+\left(y+1\right)=14\)
\(\Rightarrow\left(y+1\right)\left(2x+1\right)=14\)
Vì \(x,y\in Z\Rightarrow\left(y+1\right)\left(2x+1\right)\in Z\Rightarrow\left(y+1\right)\left(2x+1\right)\inƯ\left(14\right)=\left\{\pm1;\pm2;\pm7;\pm14\right\}\)
Xét các trường hợp, lập bảng, kết luận.
Đến đây bạn tự làm nhé.
Bài giải
Ta có :
\(2x+2xy-9x=13\)
\(x\left(2+2y-9\right)=13\)
\(x\left(2y-7\right)=13\)
\(\Rightarrow\text{ }\) \(x\text{ ; }\left(2y-7\right)\inƯ\left(13\right)\)
Ta có bảng :
x | - 1 | 1 | - 13 | 13 |
2y - 7 | - 13 | 13 | - 1 | 1 |
y | - 3 | 10 | 3 | 4 |
\(\Rightarrow\text{ }\left(x\text{ ; }y\right)=\left(-13\text{ ; }3\right),\left(13\text{ ; }10\right),\left(-1\text{ ; }3\right),\left(1\text{ ; }4\right)\)
a: =>2xy+y=7
=>(2x+1)*y=7
=>(2x+1;y) thuộc {(1;7); (7;1); (-1;-7); (-7;-1)}
=>(x,y) thuộc {(0;7); (3;1); (-1;-7); (-4;-1)}
b: =>(2x+1)^2+(y+1)^2=179-169=10
=>((2x+1)^2;(y+1)^2) thuộc {(1;9); (9;1)}
TH1: (2x+1)^2=1 và (y+1)^2=9
=>\(\left\{{}\begin{matrix}2x+1\in\left\{1;-1\right\}\\y+1\in\left\{3;-3\right\}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\in\left\{0;-1\right\}\\y\in\left\{2;-4\right\}\end{matrix}\right.\)
TH2: (2x+1)^2=9 và (y+1)^2=1
=>\(\left\{{}\begin{matrix}2x+1\in\left\{3;-3\right\}\\y+1\in\left\{1;-1\right\}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\in\left\{1;-2\right\}\\y\in\left\{0;-2\right\}\end{matrix}\right.\)
Sửa đề \(\left(2x+y\right)\left(4x^2-2xy+y^2\right)-\left(2x-y\right)\left(4x^2+2xy+y^2\right)\)
\(=8x^3+y^3-8x^3+y^3=2y^3\)
\(\left(2x+y\right)\left(4x^2-2xy+y^2\right)-\left(2x-y\right)\left(4x^2+2xy+y^2\right)\)
\(=8x^3+y^3-8x^3+y^3\)
\(=2y^3\)
b,xy-x-y-4=0
xy-x-y=4
x(y-1)-y=4
x(y-1)-(y-1)=5
(y-1).(x-1)=5
Vì 5=1.5
5.1
-1.(-5)
-5.(-1)
nên thay vao BT rồi tính
2xy - y + 2x = 13
=> (2xy + 2x) - y - 1 = 12
=> 2x(y + 1) - (y + 1) = 12
=> (y + 1)(2x - 1) = 12
Tiếp theo vẽ bảng, chia trường hợp nhé bạn ^^ mình gợi ý đến đây chắc là bạn tự làm được rồi =))