Compare: A=10^1990+1/10^1991+1 and B=10^1991+1/10^1992+1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đáng ra là toán lớp 6 đó nhưng mik thích đặt toán lớp 5 :)
A = \(\dfrac{10^{1990}+1}{10^{1991}+1}\) ⇒ 10A = \(\dfrac{10^{1991}+10}{10^{1991}+1}\) = \(1+\dfrac{9}{10^{1991}+1}\)
B = \(\dfrac{10^{1991}+10}{10^{1992}+1}\) ⇒ 10B = \(\dfrac{10^{1992}+10}{10^{1992}+1}\) = 1 + \(\dfrac{9}{10^{1992}+1}\)
Vì \(\dfrac{9}{10^{1991}+1}\) > \(\dfrac{9}{10^{1992}+1}\)
10A > 10B => A > B
Lời giải:
\(10A=\frac{10^{1991}+10}{10^{1991}+1}=\frac{10^{1991}+1+9}{10^{1991}+1}=1+\frac{9}{10^{1991}+1}\)
\(10B=\frac{10^{1992}+10}{10^{1992}+1}=1+\frac{9}{10^{1992}+1}\)
Mà \(0< 10^{1991}+1< 10^{1992}+1\Rightarrow \frac{9}{10^{1991}+1}> \frac{9}{10^{1992}+1}\)
\(\Rightarrow 1+\frac{9}{10^{1991}+1}> 1+\frac{9}{10^{1992}+1}\)
\(\Leftrightarrow 10A> 10B\Rightarrow A>B\)
Giải:
Ta gọi \(\dfrac{10^{1990}+1}{10^{1991}+1}\) =A và \(\dfrac{10^{1991}}{10^{1992}}\) =B
Ta có:
A=\(\dfrac{10^{1990}+1}{10^{1991}+1}\)
10A=\(\dfrac{10^{1991}+10}{10^{1991}+1}\)
10A=\(\dfrac{10^{1991}+1+9}{10^{1991}+1}\)
10A=\(1+\dfrac{9}{10^{1991}+1}\)
Tương tự:
B=\(\dfrac{10^{1991}}{10^{1992}}\)
10B=\(\dfrac{10^{1992}}{10^{1992}}=1\)
Vì \(\dfrac{9}{10^{1991}+1}< 1\) nên 10A<10B
⇒ \(\dfrac{10^{1990}+1}{10^{1991}+1}\) < \(\dfrac{10^{1991}}{10^{1992}}\)
\(A=\frac{10^{1990}+1}{10^{1991}+1}vàB=\frac{10^{1991}+1}{10^{1992}+1}\)
\(B=\frac{10^{1991}+1}{10^{1992}+1}<1\)
\(\Rightarrow\frac{10^{1991}+1}{10^{1992}+1}<\frac{10^{1991}+1+9}{10^{1992}+1+9}\)
\(\Rightarrow\frac{10^{1991}+1}{10^{1992}+1}<\frac{10^{1991}+10}{10^{1992}+10}\)
\(\Rightarrow\frac{10^{1991}+1}{10^{1992}+1}<\frac{10\left(10^{1990}+1\right)}{10\left(10^{1991}+1\right)}\)
\(\Rightarrow\frac{10^{1991}+1}{10^{1992}+1}<\frac{10^{1990}+1}{10^{1991}+1}=A\)
\(\Rightarrow A>B\)
\(A=\frac{10^{1990}+1}{10^{1991}+1}\Rightarrow10A=\frac{10^{1991}+1+9}{10^{1991}+1}\Rightarrow10A=1+\frac{9}{10^{1991}+1}\)
\(B=\frac{10^{1991}+1}{10^{1992}+1}\Rightarrow10B=\frac{10^{1992}+1+9}{10^{1992}+1}\Rightarrow10B=1+\frac{9}{10^{1992}+1}\)
=> 10A > 10B
=> A>B
Giải:
a) \(A=\dfrac{10^{1990}+1}{10^{1991}+1}\) và \(B=\dfrac{10^{1991}+1}{10^{1992}+1}\)
Ta có:
\(A=\dfrac{10^{1990}+1}{10^{1991}+1}\)
\(10A=\dfrac{10^{1991}+10}{10^{1991}+1}\)
\(10A=\dfrac{10^{1991}+1+9}{10^{1991}+1}\)
\(10A=1+\dfrac{9}{10^{1991}+1}\)
Tương tự :
\(B=\dfrac{10^{1991}+1}{10^{1992}+1}\)
\(10B=\dfrac{10^{1992}+10}{10^{1992}+1}\)
\(10B=\dfrac{10^{1992}+1+9}{10^{1992}+1}\)
\(10B=1+\dfrac{9}{10^{1992}+1}\)
Vì \(\dfrac{9}{10^{1991}+1}>\dfrac{9}{10^{1992}+1}\) nên \(10A>10B\)
\(\Rightarrow A>B\left(đpcm\right)\)
Chúc bạn học tốt!
day ma la lop 1 a
báo cáo