K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
11 tháng 4 2020

Lời giải:
\(10A=\frac{10^{1991}+10}{10^{1991}+1}=\frac{10^{1991}+1+9}{10^{1991}+1}=1+\frac{9}{10^{1991}+1}\)

\(10B=\frac{10^{1992}+10}{10^{1992}+1}=1+\frac{9}{10^{1992}+1}\)

\(0< 10^{1991}+1< 10^{1992}+1\Rightarrow \frac{9}{10^{1991}+1}> \frac{9}{10^{1992}+1}\)

\(\Rightarrow 1+\frac{9}{10^{1991}+1}> 1+\frac{9}{10^{1992}+1}\)

\(\Leftrightarrow 10A> 10B\Rightarrow A>B\)

4 tháng 8 2021

A>B vì 10A>10B. Tự suy nghĩ nhé :D

8 tháng 3 2019

\(A=\frac{1}{2}.\frac{1}{3}+\frac{1}{3}.\frac{1}{4}+\frac{1}{4}.\frac{1}{5}+..........+\frac{1}{8}.\frac{1}{9}=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+......+\frac{1}{8.9}=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-.......+\frac{1}{8}-\frac{1}{9}=\frac{1}{2}-\frac{1}{9}=\frac{7}{18}\)

\(B=\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+....+\frac{1}{110}=\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+.....+\frac{1}{10.11}=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-.....+\frac{1}{10}-\frac{1}{11}=\frac{1}{4}-\frac{1}{11}=\frac{7}{44}\)

\(\text{c,d cơ bản tự làm nha }\)

8 tháng 3 2019

A=>1.1/2.3+1.1/3.4+1.1/4.5+1.1/5.6+1.11/6.7+.1/7.8+1.1/8.9

=>1/2.3+1/3.4+1/4.5+1/6.7+1/7.8+1/8.9

=>1/2-1/3-1/4-1/5-1/6-1/7-1/8-1/9

=>1/2-1/9=>9/18-2/18=>7/18

Vậy A= 7/18

a: \(VT=\dfrac{1}{a+1}+\dfrac{1}{a}-\dfrac{1}{a+1}=\dfrac{1}{a}\)=VP

b: \(VP=\dfrac{a+1-a}{a\left(a+1\right)}=\dfrac{1}{a\left(a+1\right)}=VP\)

2 tháng 2 2023

Đây là tổng tỉ mà bạn

AH
Akai Haruma
Giáo viên
2 tháng 2 2023

Lời giải:
a.

$(1-\frac{1}{2})(1-\frac{1}{3})(1-\frac{1}{4})....(1-\frac{1}{2011})$

$=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{2010}{2011}$

$=\frac{1.2.3...2010}{2.3.4...2011}$

$=\frac{1}{2011}$
b.

$a=35:(3+4)\times 3=15$ 

$b=35-15=20$

15 tháng 5 2022

undefined

15 tháng 5 2022

undefined

24 tháng 6 2018

a,\(A=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2005}-\frac{1}{2006}\)

\(A=\left(1+\frac{1}{3}+...+\frac{1}{2005}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2006}\right)\)

\(A=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2006}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2006}\right)\)

\(=B\left(ĐPCM\right)\)

b, \(A=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2006}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{1003}\right)\)

\(A=\frac{1}{1004}+\frac{1}{1005}+...+\frac{1}{2006}\)

24 tháng 6 2018

ui ghi lộn, chữ đpcm chuyển xuống dòng cuối cùng nhé :v

\(\frac{1}{a}-\frac{1}{b}=\frac{1}{a}-\frac{1}{a+1}=\frac{a+1}{a\left(a+1\right)}-\frac{a}{a\left(a+1\right)}=\frac{1}{a\left(a+1\right)}\)

\(\frac{1}{a}.\frac{1}{b}=\frac{1}{a}.\frac{1}{a+1}=\frac{1}{a\left(a+1\right)}\)

vậy \(\frac{1}{a}-\frac{1}{b}=\frac{1}{a}.\frac{1}{b}\)

20 tháng 6 2015

\(\frac{1}{a}-\frac{1}{b}\) với b = a + 1

\(\frac{b}{a.b}-\frac{a}{a.b}\)

\(\frac{b-a}{a.b}\)

\(\frac{a+1-a}{a.b}\)

\(\frac{1}{a.b}\)

Vậy \(\frac{1}{a.b}=\frac{1}{a}-\frac{1}{b}\)