K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 3 2020

A B C H D E

 TA CÓ \(\Delta ABC\)CÂN TẠI A

\(\Rightarrow\hept{\begin{cases}AB=AC\\\widehat{B}=\widehat{C}\end{cases}}\)

A) VÌ AH VUÔNG GÓC VỚI BC

=> AH LÀ ĐƯỜNG CAO

MÀ TRONG TAM GIÁC CÂN ĐƯỜNG CAO CŨNG CHÍNH LÀ ĐƯỜNG TRUNG TUYẾN

=> AH LÀ TRUNG TUYẾN CỦA BC

=> BH=CH(ĐPCM)

B) XÉT TAM GIÁC NHA

8 tháng 3 2020

A B H C D E

Vì tam giác ABC cân tại A suy ra AB=AC, góc B=góc C

Xét tam giác ABH và tam giác ACH

có AB=AC(CMT)

góc AHC=góc AHB (=900)

góc B=góc C

suy ra tam giác ABH = tam giác ACH (cạnh huyền-góc nhọn)

suy ra BH=CH (hai cạnh tương ứng)

b) Xét tam giac BHD và tam giác CHE

có BH=CH (CMT)

góc B=góc C

góc HDB = góc HEC = 900

suy ra tam giac BHD = tam giác CHE (cạnh huyền-góc nhọn)

suy ra BD=CE (hai cạnh tương ứng)

a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

AB=AC

AH chung

=>ΔAHB=ΔAHC

=>HB=HC

b: Xét ΔHDB vuông tại D và ΔHEC vuông tại E có

HB=HC

góc B=góc C

=>ΔHDB=ΔHEC

=>BD=CE

11 tháng 10 2023

a: ΔABC vuông tại A

=>\(BC^2=AB^2+AC^2\)

=>\(BC=\sqrt{9^2+12^2}=15\left(cm\right)\)

Xét ΔABC vuông tại A có AH là đường cao

nên \(\left\{{}\begin{matrix}AH\cdot BC=AB\cdot AC\\BH\cdot BC=AB^2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AH=\dfrac{9\cdot12}{15}=7.2\left(cm\right)\\BH=\dfrac{9^2}{15}=5.4\left(cm\right)\end{matrix}\right.\)

b:

ΔAHB vuông tại H có HD là đường cao

nên \(HD\cdot AB=HA\cdot HB\)

ΔAHC vuông tại H có HE là đường cao

nên \(HE\cdot AC=HA\cdot HC\)

 \(HD\cdot AB+HE\cdot AC\)

\(=HA\cdot HB+HA\cdot HC=HA\cdot\left(HB+HC\right)\)

\(=HA\cdot BC=AB\cdot AC\)

c: Xét tứ giác ADHE có \(\widehat{ADH}=\widehat{AEH}=\widehat{DAE}=90^0\)

=>ADHE là hình chữ nhật

ΔABC vuông tại A có AM là trung tuyến

nên AM=MB=MC

\(\widehat{IEA}+\widehat{IAE}=\widehat{DEA}+\widehat{IAC}\)

\(=\widehat{DHA}+\widehat{MCA}\)

\(=\widehat{ABC}+\widehat{ACB}=90^0\)

=>AM vuông góc DE tại I

ΔADE vuông tại A có AI là đường cao

nên \(\dfrac{1}{AI^2}=\dfrac{1}{AE^2}+\dfrac{1}{AD^2}\)

a: Xet ΔHBA và ΔABC có

góc BHA=góc BAC

góc B chung

=>ΔHBA đồng dạng với ΔABC

b: ΔABC vuông tại A có AH vuông góc BC

nên BA^2=BH*BC

\(AB=\sqrt{3\cdot12}=6\left(cm\right)\)

\(AH=\sqrt{6^2-3^2}=3\sqrt{3}\left(cm\right)\)

c: Xet ΔCAE có KD//AE
nên KD/AE=CK/CE

Xét ΔCEB có KH//EB

nên KH/EB=CK/CE=KD/AE
mà AE=EB

nên KH=KD

a: Xét ΔAHB vuông tại H có HE là đường cao

nên \(AE\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HD là đường cao

nên \(AD\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AE\cdot AB=AD\cdot AC\)