Cho hình vẽ sau. Tính số đo các góc B,C
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gốc ABC = 180 - 130 = 50 ( kề bù) ABC = BCD ( 2 góc so le trong, AB // CD ) Mà BCD = cái góc (?) nên góc (?) = 50, E tự đặt tên góc nhé :))
\(\left\{{}\begin{matrix}a//b\\a\perp AB\end{matrix}\right.\Rightarrow b\perp AB\Rightarrow\widehat{B_1}=90^0\\ a//b\Rightarrow\widehat{D_1}+\widehat{C}=180^0\left(2.góc.trong.cùng.phía\right)\\ \Rightarrow\widehat{D_1}=180^0-130^0=50^0\)
Ta có: a//b
Mà \(a\perp AB\)
=> \(b\perp AB\Rightarrow\widehat{B_1}=90^0\)
Ta có: a//b
\(\Rightarrow\widehat{D_1}+\widehat{DCB}=180^0\)(trong cùng phía)
\(\Rightarrow\widehat{D_1}=180^0-\widehat{DCB}=180^0-130^0=50^0\)
Vì AB vuông góc với b nên góc ABC = 90 độ.
Vì a // b nên góc ADC và góc BCD là 2 góc trong cùng phía
=> Góc ADC + Góc BCD = 180 độ
Mà góc ADC = 120 độ ( đối đỉnh )
=> Góc BCD + 120 độ = 180 độ
=> Góc BCD = 60 độ
Vì AD _/_ DC
AD_/_ AB ==> DC // AB
Vì DC // AB nên
C^ 4 = C^ 2 = 65o (đối đỉnh)
C^ 3 + C^2 = 180o ( kề bù)
C^3 = 180o - C^2 = 180o - 65o = 115o
C^3 = C^1 = 115o( đối đỉnh)
B^1 = C^4 = 65o ( so le trong)
B^3 = B^1 = 65o (đối đỉnh)
B^2 = C^1 = 115o( so le trong)
B^4 = B^2 = 115o ( đối đỉnh)
Vậy C^1 = 115o
C^2= 65o
C^3=115o
C^4=65o
B^1=65o
B^2=115o
B^3=65o
B^4=115o
65 o C A B D 1 2 3 4 1 3 2 4