K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 9 2016

a)Ta có \(2016^{101}\)+\(2016^{100}\)=\(2016^{99}\).(\(2016^2\)+2016)=\(2016^{99}\).4066272=\(2016^{99}\).2016.2017\(⋮\)2017(đpcm)

b)Ta có \(3^{207}\)+\(3^{206}\)-\(3^{205}\)=\(3^{204}\).(\(3^3\)+\(3^2\)-3)=\(3^{204}\).33

=\(3^{204}\).11.3\(⋮\)11(đpcm)

c)Ta có \(4^{13}\)=\(4^{12}\).4=\(\left(4^2\right)^6\).4=\(16^6\).4

Vì \(16^n\) luôn có chữ số tận cùng là 6(n>0)=>\(16^6\) có chữ số tận cùng là 6

=>\(16^6\).4 có chữ số tận cùng là 4=>\(4^{13}\) có chữ số tận cùng là 4(1)

Ta có \(32^5\)=\(\left(2^5\right)^5\)=\(2^{25}\)=\(2^{24}\).2=\(\left(2^4\right)^6\).2=\(16^6\).2

Vì \(16^n\) luôn có chữ số tận cùng là 6(n>0)=>\(16^6\) có chữ số tận cùng là 6

=>\(16^6\).2 có chữ số tận cùng là 2=>\(32^5\) có chữ số tận cùng là 2(2)

Ta có \(8^8\)=\(\left(2^3\right)^8\)=\(2^{24}\)=\(\left(2^4\right)^6\)=\(16^6\)

Vì \(16^n\) luôn có chữ số tận cùng là 6(n>0)=>\(16^6\) có chữ số tận cùng là 6

=>\(8^8\) có chữ số tận cùng là 6(3)

Từ (1);(2) và (3)=>\(4^{13}\)+\(32^5\)-\(8^8\) có chữ số tận cùng là 0(vì 4+2-6=0)

=>\(4^{13}\)+\(32^5\)-\(8^8\)\(⋮\)5(đpcm)

24 tháng 8 2016

TỈ lệ cần chứng minh 

<br class="Apple-interchange-newline"><div id="inner-editor"></div>2015a2016b2015c2016d =2016a+2017b2016c+2017d 

Vì ab =cd ac =bd  = 2015a2015c =2016b2016d =2016a2016c =2017b2017d 

Áp dụng t/c của dãy tỉ số bằng nhau ta có: \(\frac{a}{c}\)=\(\frac{2015a-2016b}{2015c-2016d}\)=\(\frac{2016a+2017b}{2016c+2017d}\)

17 tháng 4 2017

ta thấy:

A<\(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+.....+\frac{1}{100.101}=\frac{1}{2}-\frac{1}{101}=\frac{99}{202}< 1\)

mà 1<2

=>A<2

vậy.......................

Bài 2: 

a) Ta có: \(3^{n+3}+3^{n+1}+2^{n+3}+2^{n+2}\)

\(=3^{n+1}\cdot10+2^{n+3}\cdot3⋮6\)

b) Ta có: \(4^{13}+32^5-8^8\)

\(=2^{26}+2^{25}-2^{24}\)

\(=2^{24}\left(2^2+2-1\right)\)

\(=2^{24}\cdot5⋮5\)

c) Ta có: \(2014^{100}+2014^{99}\)

\(=2014^{99}\left(2014+1\right)\)

\(=2014^{99}\cdot2015⋮2015\)

16 tháng 3 2021

Đừng chép mạng nha mấy bạn 

16 tháng 3 2021
answer-reply-image answer-reply-imageBạn tham khảo nhé!
4 tháng 10 2019

vì -1 hơn 1 hai số cho nên;

a) a/b và c/d ^2 =ab/cd hơn kém nhau 2

b) dựa theo tính chất kết hợp (a+b/c+d ) ^3 = a ^3 ...

19 tháng 7 2021

llllllllllllllllllllllllllll

a) Ta có: \(32^{12}\cdot98^{20}\)

\(=2^{60}\cdot2^{20}\cdot7^{40}\)

\(=2^{80}\cdot7^{40}\)

\(=\left(2^2\cdot7\right)^{40}=28^{40}\)(đpcm)

b) Ta có: \(3^{1994}+3^{1993}-3^{1992}\)

\(=3^{1992}\left(3^2+3-1\right)\)

\(=3^{1992}\cdot11⋮11\)

7 tháng 12 2016

chứng minh 

số chính phương chia 4 dư 0 hoac 1

A=n^2 (n so tu nhien)

n=2k => A=4k^2 chia het cho 4

n=2k+1=> A=(2k+1)^2=4k^2+4k+1 chia 4 du 1

Kết luận số chính phương chia cho 4 chỉ có thể  dư 0 hoặc dư 1

6 tháng 12 2016

4 số liên tiếp có dạng a, a+1 , a+2, a+3

A=a+a+1+a+2+a+3=4a+6 

T/C : "Số chính phương chia cho 4 hoặc 3 không bao giờ có số dư là 2; số chính phương lẻ khi chia 8 luôn dư 1"

\(\frac{A}{4}=\left(\frac{4a+6}{4}\right)=\left(a+1\right)du2\)