K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 6 2018

1.

\(x+y=1\Rightarrow x=1-y\)

\(\Rightarrow x^2+y^2=\left(1-y\right)^2+y^2=2y^2-2y+1=2\left(y^2-y+\dfrac{1}{2}\right)=2\left(y^2-2y\cdot\dfrac{1}{2}+\dfrac{1}{4}\right)+\dfrac{1}{2}=2\left(y-\dfrac{1}{2}\right)^2+\dfrac{1}{2}\ge\dfrac{1}{2}\)

Vậy \(A_{Min}=\dfrac{1}{2}\Leftrightarrow x=y=\dfrac{1}{2}\)

2.

Ta có:

\(B=\dfrac{1}{x^2y^2}-\dfrac{1}{x^2}-\dfrac{1}{y^2}=\dfrac{1}{x^2y^2}-\dfrac{y^2}{x^2y^2}-\dfrac{x^2}{x^2y^2}=\dfrac{1-\left(x^2+y^2\right)}{x^2y^2}\le\dfrac{1-\dfrac{1}{2}}{\dfrac{1}{4}\cdot\dfrac{1}{4}}=\dfrac{\dfrac{1}{2}}{\dfrac{1}{8}}=\dfrac{1}{4}\)

Vậy \(B_{Max}=\dfrac{1}{4}\Leftrightarrow x=y=\dfrac{1}{2}\)

Tui chỉ làm bừa thui nha. K chắc lắm. Thử lại đi haha

Y
6 tháng 5 2019

+ \(P=\frac{x}{y^2+1}+\frac{1}{y^2+1}+\frac{y}{z^2+1}+\frac{1}{z^2+1}+\frac{z}{x^2+1}+\frac{1}{x^2+1}\)

+ \(\frac{1}{x^2+1}=\frac{x^2+1-x^2}{x^2+1}=1-\frac{x^2}{x^2+1}\)

+ \(x^2+1\ge2x\forall x\)

\(\Rightarrow\frac{x^2}{x^2+1}\le\frac{x^2}{2x}=\frac{x}{2}\)

\(\Rightarrow-\frac{x^2}{x^2+1}\ge-\frac{x}{2}\)

\(\Rightarrow\frac{1}{x^2+1}\ge1-\frac{x}{2}\)

Dấu "=" xảy ra <=> x = 1

+ Tương tự ta cm đc :

\(\frac{1}{y^2+1}\ge1-\frac{y}{2}\). Dấu "=" xảy ra <=> y = 1

\(\frac{1}{z^2+1}\ge1-\frac{z}{2}\). Dấu "=" xảy ra <=> z = 1

Do đó : \(\frac{1}{x^2+1}+\frac{1}{y^2+1}+\frac{1}{z^2+1}\ge3-\left(\frac{x}{2}+\frac{y}{2}+\frac{z}{2}\right)\)

\(\Rightarrow\frac{1}{x^2+1}+\frac{1}{y^2+1}+\frac{1}{z^2+1}\ge3-\frac{3}{2}=\frac{3}{2}\) (1)

Dấu "=" xảy ra <=> x = y = z = 1.

+ \(\frac{x}{y^2+1}=\frac{x\left(y^2+1\right)-xy^2}{y^2+1}=x-\frac{xy^2}{y^2+1}\)

\(\Rightarrow\frac{x}{y^2+1}\ge x-\frac{xy^2}{2y}=x-\frac{xy}{2}\) ( do \(y^2+1\ge2y\forall y\) )

Dấu "=" xảy ra <=> y = 1.

Tương tự : \(\frac{y}{z^2+1}\ge y-\frac{yz}{2}\). Dấu "=" xảy ra <=> z = 1.

\(\frac{z}{x^2+1}\ge z-\frac{zx}{2}\). Dấu "=" xảy ra <=> x = 1.

Do đó : \(\frac{x}{y^2+1}+\frac{y}{z^2+1}+\frac{z}{x^2+1}\ge\left(x+y+z\right)-\frac{xy+yz+zx}{2}\)

\(\Rightarrow\frac{x}{y^2+1}+\frac{y}{z^2+1}+\frac{z}{x^2+1}\ge3-\frac{\frac{\left(x+y+z\right)^2}{3}}{2}\)

( do \(xy+yz+zx\le\frac{\left(x+y+z\right)^2}{3}\) )

\(\Rightarrow\frac{x}{y^2+1}+\frac{y}{z^2+1}+\frac{z}{x^2+1}\ge3-\frac{3}{2}=\frac{3}{2}\) (2)

Dấu "=" xảy ra <=> x = y = z = 1.

Từ (1) và (2) suy ra

\(P\ge\frac{3}{2}+\frac{3}{2}=3\)

P = 3 \(\Leftrightarrow x=y=z=1\)

Vậy Min P = 3 \(\Leftrightarrow x=y=z=1\).

NV
14 tháng 11 2019

\(A=\frac{x^2+\left(a+b\right)x+ab}{x}=x+\frac{ab}{x}+a+b\)

\(\Rightarrow A\ge2\sqrt{\frac{ab.x}{x}}+a+b=2\sqrt{ab}+a+b\)

Dấu "=" xảy ra khi \(x=\sqrt{ab}\)

b/ \(x^2+x=y^2\)

- Với \(x=0\Rightarrow y=0\)

- Với \(x\ge1\Rightarrow\left\{{}\begin{matrix}x^2+x>x^2\\x^2+x< x^2+2x+1=\left(x+1\right)^2\end{matrix}\right.\)

\(\Rightarrow x^2< y^2< \left(x+1\right)^2\Rightarrow\) không tồn tại y nguyên thỏa mãn

- Với \(x\le-1\Rightarrow\left\{{}\begin{matrix}x^2+x=\left(x+1\right)^2-\left(x+1\right)\ge\left(x+1\right)^2\\x^2+x< x^2\end{matrix}\right.\)

\(\Rightarrow\left(x+1\right)^2\le y^2< x^2\Rightarrow y^2=\left(x+1\right)^2\)

\(\Rightarrow x^2+x=\left(x+1\right)^2\Rightarrow x+1=0\Rightarrow x=-1\Rightarrow y=0\)

4 tháng 4 2021

\(\left(1-\frac{1}{x^2}\right)\left(1-\frac{1}{y^2}\right)=\left(1-\frac{1}{x}\right)\left(1-\frac{1}{y}\right)\left(1+\frac{1}{x}\right)\left(1+\frac{1}{y}\right)\)

\(=\frac{x-1}{x}\frac{y-1}{y}\left(1+\frac{1}{x}\right)\left(1+\frac{1}{y}\right)\)

\(=\frac{xy-x-y+1}{xy}\left(1+\frac{1}{y}+\frac{1}{x}+\frac{1}{xy}\right)\)

\(=\frac{-\left(x+y\right)+1}{xy}\left(\frac{xy+x+y+1}{xy}\right)=1+\frac{2}{xy}\)

 mà \(xy\le\frac{\left(x+y\right)^2}{4}=\frac{1}{4}\)

\(\Rightarrow1+\frac{2}{\frac{1}{4}}=9\)Dấu ''='' xảy ra khi \(x=y=\frac{1}{2}\)

24 tháng 11 2021

Ta có x2+y2 / x-y = x2-2xy+y2+2xy / x-y

                            = (x-y)2+2xy / x-y

Mà xy = 1 => 2xy = 2. Thay vào, ta có

(x-y)2+2xy / x-y = (x-y)2+2 / x-y = (x-y)2 / x-y + 2 / x-y

                                                  = x-y + 2 / x-y

Áp dụng BĐT Cauchy, ta có

x-y + 2 / x-y ≥ 2.√(x-y).2 / x-y] = 2.√2 = (√2)3

Vậy Min A = (√2)3