Chứng minh3+32+33+...+339 chia hết cho39
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 8⁸ + 2²⁰
= (2³)⁸ + 2²⁰
= 2²⁴ + 2²⁰
= 2²⁰.(2⁴ + 1)
= 2²⁰.17 ⋮ 17
Vậy A ⋮ 17
cho A = 1 + 3 + 32 + 33 + ... + 311
a ) chứng minh A chia hết cho 13
b) chứng minh A chia hết cho 40
A=1+3+3^2+3^3+...+3^98+3^99+3^100
A=(1+3+ 3^2)+(3^3+3^4+3^5)+...+(3^98+3^99+3^100)
A=(1+3+3^2)+3^3x(1+3+3^2)+...+3^98x(1+3+3^2)
A=13x3^3x13+...+3^98x13
=> 13x(1+3+3^3+...+3^98)chia hết cho 13
Vậy A chia hết cho 13
Ta có :
\(32^{n+1}+32^n=32^n\left(32+1\right)=32^n.33\)
Mà \(32^n.33⋮33\)
\(\Rightarrow32^{n+1}+32^n⋮33\)
\(\RightarrowĐPCM\)
\(A=3\left(1+3+3^2\right)+3^4\left(1+3+3^2\right)+...+3^{58}\left(1+3+3^2\right)\)
\(=3.13+3^4.13+...+3^{58}.13=13\left(3+3^4+...+3^{58}\right)⋮13\)
\(3+3^2+...+3^{2022}\)
\(=\left(3+3^2+3^3\right)+...+\left(3^{2020}+3^{2021}+3^{2022}\right)\)
\(=3\cdot\left(1+3+9\right)+3^4\cdot\left(1+3+9\right)+...+3^{2020}\cdot\left(1+3+9\right)\)
\(=3\cdot13+3^4\cdot13+...+3^{2020}\cdot13\)
\(=13\cdot\left(3+3^4+...+3^{2020}\right)\) ⋮ 13
Vậy....
\(C=1+3+3^2+3^3+...+3^{11}\\ a,C=\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+\left(3^6+3^7+3^8\right)+\left(3^9+3^{10}+3^{11}\right)\\ =13+3^3.\left(1+3+3^2\right)+3^6.\left(1+3+3^2\right)+3^9.\left(1+3+3^2\right)\\ =13+3^3.13+3^6.13+3^9.13\\ =13.\left(1+3^3+3^6+3^9\right)⋮13\)
Ý a phải chia hết cho 13 chứ em?
b: C=(1+3+3^2+3^3)+...+3^8(1+3+3^2+3^3)
=40(1+...+3^8) chia hết cho 40
a: C ko chia hết cho 15 nha bạn
a) B\(=\) 3 + 32 + 33 + ... + 360
\(=\)(3+32)+(33+34)+...+(359+360)
\(=\)3(1+3)+33(1+3)+...+359(1+3)
\(=\)(3+1)(3+33+...+359)
\(=\)4(3+33+...+359)⋮4
⇒B⋮4
b) B\(=\)(3+32+33)+...+(358+359+360)
\(=\)30(3+32+33)+...+357(358+359+360)
\(=\)3+32+33(30+33+36+...+357)
\(=\)39(30+33+36+...+357)⋮13
⇒ B⋮13
S = 3 + 3 2 + 3 3 + 3 4 + 3 5 + 3 6 + 3 7 + 3 8 + 3 9 = 3 + 3 2 + 3 3 + 3 4 + 3 5 + 3 6 + 3 7 + 3 8 + 3 9 = 39 + 3 3 . 39 + 3 6 . 39 = 39 . 1 + 3 3 + 3 6 ⋮ − 39
Vậy S chia hết cho -39
Lời giải:
$B=3+(32+33+...+3100)$
$=3+\frac{(3100+32).3069}{2}=3+4806054=4806057$ không chia hết cho $160$
Bạn xem lại đề.
Đặt A = 3 + 32 + 33 + ... + 339 (có 39 số; 39 chia hết cho 3)
A = (3 + 32 + 33) + (34 + 35 + 36) + ... + (337 + 338 + 339)
A = 3.(1 + 3 + 32) + 34.(1 + 3 + 32) + ... + 337.(1 + 3 + 32)
A = 3.13 + 34.13 + ... + 337.13
A = 13.(3 + 34 + ... + 337) chia hết cho 13 (1)
Lại có: A chia hết cho 3 (2)
Từ (1) và (2), mà (3;13)=1
=> A chia hết cho 39 (đpcm)
A=3+32+...+339
=(3+32+33)+...+(337+338+339)
=3(1+3+32)+...+337(1+3+32)
=3*39+...+337*39
=39*(3+...+337) chia hết 39
Đpcm