K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 9 2016

Khai triển :

\(\frac{2}{x^2-2x+3}=\frac{2}{\left(x^2-2x+1^2\right)+2}=2\)

Ta có : \(\left(x-1\right)^2\ge0\)

\(\Rightarrow\frac{2}{\left(x-1\right)^2+2}\le1\)

Dấu " = " xảy ra khi x = 1

Vậy MAXA= 1 khi x = 1

10 tháng 9 2016
\(\frac{2}{x^2-2x+3}=\frac{2}{\left(x^2-2x+1\right)+2}=\frac{2}{\left(x-1\right)^2+2}\)

\(\left(x-1\right)^2\ge0\Rightarrow\left(x-1\right)^2+2\ge2\Rightarrow\frac{2}{\left(x-1\right)^2+2}\le1\)

Khi \(\frac{2}{\left(x-1\right)^2+2}=1\Leftrightarrow x=1\)

Vậy \(\frac{2}{x^2-2x+3}\) đạt giá trị lớn nhất là 1 khi x=1

14 tháng 2 2018

Ta có số nguyên âm lớn nhất là -1 => y = -1

Thay x = \(\frac{1}{2}\); y = -1 vào biểu thức, ta có:

\(\frac{x^3-3x^2+0,25xy^2-4}{x^2+y}\)\(\frac{\left(\frac{1}{2}\right)^3-3\left(\frac{1}{2}\right)^2+0,25\left(\frac{1}{2}\right)\left(-1\right)^2-4}{\left(\frac{1}{2}\right)^2+\left(-1\right)}\)\(\frac{\frac{1}{8}-3.\frac{1}{4}+\frac{1}{4}-4}{\frac{1}{4}-1}\)

\(\frac{\frac{1}{8}-1-4}{\frac{-3}{4}}\)\(\frac{\frac{-7}{8}+\frac{1}{4}-4}{\frac{-3}{4}}\)\(\frac{\frac{-7+2-32}{8}}{\frac{-3}{4}}\)\(\frac{\frac{-37}{8}}{\frac{-3}{4}}\)\(\frac{-37}{8}\left(\frac{-4}{3}\right)\)\(\frac{37}{6}\)

Vậy khi x = \(\frac{1}{2}\)và y là số nguyên âm lớn nhất thì A có giá trị là \(\frac{37}{6}\)

18 tháng 9 2018

1/ Ta có: \(xy\le\frac{\left(x+y\right)^2}{4}=\frac{2^2}{4}=\frac{4}{4}=1\)

Dấu "=" xảy ra khi x=y=1

Máy mình bị lỗi nên ko nhìn được các bài tiếp theo

Chúc bạn học tốt :)

18 tháng 9 2018

Ta có : x+y=2 => x=2-y. Thay vào bt ta đc : xy= (2-y).y = 2y -y^2    

Vì y^2 >= 0 =>2y-y^2 nhỏ hơn hoặc bằng 0

15 tháng 12 2016

để A có GTLN thì 2(x-1)2 + 3 phải bé nhất

mà 2(x-1)2 luôn > hoặc = 0 

=> A có GTLN thì 2(x-1)2 + 3 = 3 

=> x=1

GTLN of A là 1/3 khi và chỉ khi x = 1

để B có GTLN thì 17-x > 0 và bé nhất

=> 17-x = 1

=> x = 16

GTLN của B = 1 khi và chỉ khi x=16

7 tháng 11 2017

4-\(x^2\)+2x

=-x\(^2\)+2x-1+5

=-(x\(^2\)-2x+1)+5

=-(x-1)\(^2\)+5

có(x-1)\(^2\)\(\ge\)0\(\forall\)x\(\in\)R

=>-(x-1)\(^2\)\(\le\)0\(\forall\)x\(\in\)R

=>-(x-1)\(^2\)+5\(\le\)5\(\forall\)x\(\in\)R

vậy GTLN của bt trên là 5 \(\Leftrightarrow\)x=1

16 tháng 12 2016

Amax=1/3 khi x=2

22 tháng 8 2019

Á đù giai thừa kìa 

Hay nhóc ghi sai đề đấy 

22 tháng 8 2019

Mẹ viết đề ngu vler 

Hỏi ko tloi dell làm nữa

16 tháng 12 2016

!17-x!  nhỏ nhất =>!A! lớn nhất 

\(\hept{\begin{cases}x\in Z\\x\ne17\end{cases}\Rightarrow!17-x!\ge1}\) 

Amax=13 khi 17-x=1 hay x=16

Amin=-13 khi 17-x=-1hay x=18

8 tháng 5 2017

min = 13/17

22 tháng 8 2019

B = 5|1 - 4x| - 1
Ta có: 5|1 - 4x| \(\ge\)0\(\forall\)x

=> 5|1 - 4x| - 1 \(\ge\)-1 \(\forall\)x

Dấu "=" xảy ra <=> 1 - 4x = 0 <=> x = 1/4

vậy MinB = -1 tại x = 1/4

E = 5 - |2x - 1|

Ta có: |2x - 1| \(\ge\)\(\forall\)x

=> 5 - |2x - 1| \(\le\)\(\forall\)x

Dấu "=" xảy ra <=> 2x - 1 = 0 <=> x = 1/2

Vậy MaxE = 5 tại x = 1/2

P = \(\frac{1}{\left|x-2\right|+3}\)

Ta có: |x - 2| \(\ge\)\(\forall\)x

=> |x - 2| + 3 \(\ge\)\(\forall\)x

=> \(\frac{1}{\left|x-2\right|+3}\le\frac{1}{3}\forall x\)

Dấu "=" xảy ra <=> x - 2 = 0 <=> x = 2

Vậy MaxP = 1/3 tại x = 2