\(\frac{x^3-3x^2+0,25xy^2-4}{x^2+y}\) . Tính giá trị của A biết x= 
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 2 2018

Ta có số nguyên âm lớn nhất là -1 => y = -1

Thay x = \(\frac{1}{2}\); y = -1 vào biểu thức, ta có:

\(\frac{x^3-3x^2+0,25xy^2-4}{x^2+y}\)\(\frac{\left(\frac{1}{2}\right)^3-3\left(\frac{1}{2}\right)^2+0,25\left(\frac{1}{2}\right)\left(-1\right)^2-4}{\left(\frac{1}{2}\right)^2+\left(-1\right)}\)\(\frac{\frac{1}{8}-3.\frac{1}{4}+\frac{1}{4}-4}{\frac{1}{4}-1}\)

\(\frac{\frac{1}{8}-1-4}{\frac{-3}{4}}\)\(\frac{\frac{-7}{8}+\frac{1}{4}-4}{\frac{-3}{4}}\)\(\frac{\frac{-7+2-32}{8}}{\frac{-3}{4}}\)\(\frac{\frac{-37}{8}}{\frac{-3}{4}}\)\(\frac{-37}{8}\left(\frac{-4}{3}\right)\)\(\frac{37}{6}\)

Vậy khi x = \(\frac{1}{2}\)và y là số nguyên âm lớn nhất thì A có giá trị là \(\frac{37}{6}\)

14 tháng 2 2018

Thế vô tính thôi có j đâu

15 tháng 2 2018

kết quả A=6 ạ?

9 tháng 5 2019

a) \(f\left(x\right)=-x^4+3x^3-\frac{1}{3}x^2+2x+5\)

\(g\left(x\right)=x^4+3x^3-\frac{2}{3}x^2-2x-10\)

b) \(f\left(x\right)+g\left(x\right)=-x^4+3x^3-\frac{1}{3}x^2+2x+5+x^4+3x^3-\frac{2}{3}x^2-2x-10\)

                                \(=6x^3-x^2-5\)

c) +) Thay x=1 vào đa thức f(x) + g(x) ta được :

       \(6.1^3-1^2-5=0\)

Vậy x=1 là nghiệm của đa thức f(x) + g(x)

+) Thay x=-1 vào đa thức f(x) + g(x) ta được :

    \(6.\left(-1\right)^3-\left(-1\right)^2-5=-10\)

Vậy x=-1 ko là nghiệm của đa thức f(x) + g(x)

2 tháng 7 2021
Câu trả lời bằng hình

Bài tập Tất cả

4 tháng 3 2020

a)\(15\cdot2^3\cdot\left(-2\right)^3\cdot3^3=-25920\)

b)\(\frac{-1}{3}\cdot1^2\cdot\left(-\frac{1}{2}\right)^3\cdot\left(-2\right)^3=\frac{-1}{3}\)

c)\(\frac{2}{5}a\cdot\left(-3\right)^3\cdot\left(-1\right)^6\cdot2=\frac{-108}{5}a\)

NM
14 tháng 8 2021

ta có :

\(\frac{x^2}{4}=\frac{y^2}{9}=\frac{z^2}{25}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có : 

\(\frac{x^2}{4}=\frac{y^2}{9}=\frac{z^2}{25}=\frac{x^2+y^2+z^2}{4+9+25}=\frac{152}{38}=4\)

vậy ta có \(x^2=16\Rightarrow\orbr{\begin{cases}x=4,y=-6,z=10\\x=-4,y=6,z=-10\end{cases}}\)