Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(f\left(x\right)=-x^4+3x^3-\frac{1}{3}x^2+2x+5\)
\(g\left(x\right)=x^4+3x^3-\frac{2}{3}x^2-2x-10\)
b) \(f\left(x\right)+g\left(x\right)=-x^4+3x^3-\frac{1}{3}x^2+2x+5+x^4+3x^3-\frac{2}{3}x^2-2x-10\)
\(=6x^3-x^2-5\)
c) +) Thay x=1 vào đa thức f(x) + g(x) ta được :
\(6.1^3-1^2-5=0\)
Vậy x=1 là nghiệm của đa thức f(x) + g(x)
+) Thay x=-1 vào đa thức f(x) + g(x) ta được :
\(6.\left(-1\right)^3-\left(-1\right)^2-5=-10\)
Vậy x=-1 ko là nghiệm của đa thức f(x) + g(x)
ta có :
\(\frac{x^2}{4}=\frac{y^2}{9}=\frac{z^2}{25}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{x^2}{4}=\frac{y^2}{9}=\frac{z^2}{25}=\frac{x^2+y^2+z^2}{4+9+25}=\frac{152}{38}=4\)
vậy ta có \(x^2=16\Rightarrow\orbr{\begin{cases}x=4,y=-6,z=10\\x=-4,y=6,z=-10\end{cases}}\)
Ta có số nguyên âm lớn nhất là -1 => y = -1
Thay x = \(\frac{1}{2}\); y = -1 vào biểu thức, ta có:
\(\frac{x^3-3x^2+0,25xy^2-4}{x^2+y}\)= \(\frac{\left(\frac{1}{2}\right)^3-3\left(\frac{1}{2}\right)^2+0,25\left(\frac{1}{2}\right)\left(-1\right)^2-4}{\left(\frac{1}{2}\right)^2+\left(-1\right)}\)= \(\frac{\frac{1}{8}-3.\frac{1}{4}+\frac{1}{4}-4}{\frac{1}{4}-1}\)
= \(\frac{\frac{1}{8}-1-4}{\frac{-3}{4}}\)= \(\frac{\frac{-7}{8}+\frac{1}{4}-4}{\frac{-3}{4}}\)= \(\frac{\frac{-7+2-32}{8}}{\frac{-3}{4}}\)= \(\frac{\frac{-37}{8}}{\frac{-3}{4}}\)= \(\frac{-37}{8}\left(\frac{-4}{3}\right)\)= \(\frac{37}{6}\)
Vậy khi x = \(\frac{1}{2}\)và y là số nguyên âm lớn nhất thì A có giá trị là \(\frac{37}{6}\)