Cho hình vẽ. Biết góc BAC=50độ,góc BCA=30độ,góc BCH=100độ và HC vuông góc tại H
a) Chứng minh AB vuôg góc xy
b) Tính góc ABC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có \(\widehat{A}+\widehat{B}+\widehat{C}\) = 180o ( định lý tổng 3 góc của 1 tam giác )
90o+50o+\(\widehat{C}\) = 180o
140o+\(\widehat{C}\) = 180o
\(\widehat{C}\) = 180o-140o
\(\widehat{C}\) = 40o
b) Vì KH//AC có góc đồng vị tạo thành
Có \(\widehat{BKH}\) đồng vị với \(\widehat{BAC}\)
=> \(\widehat{BKH}\)=\(\widehat{BAC}\)=90o
=> HK vuông góc với AB
c) Ta có góc C = 40o (câu a)
Ta lại có : \(\widehat{HBK}+\widehat{BKH}+\widehat{BHK}=180^o\) (định lý tổng 3 góc của 1 tam giác)
50o+90o+\(\widehat{BHK}\) = 180o
\(\widehat{BHK}\) = 180o-(50o+90o)
=> \(\widehat{BHK}\) = 40o
Vậy góc BHK = góc C ( 40o=40o )
+ AH _|_ BC => \(\widehat{AHB}\) = 90o
Ta có \(\widehat{AHB}+\widehat{B}+\widehat{BAH}\) = 180o (định lý tổng 3 góc của 1 tam giác)
90o+50o+\(\widehat{AHB}\) = 180o
\(\widehat{AHB}\) = 180o-(90o+50o)
=> \(\widehat{AHB}\) = 40o
Vậy \(\widehat{KHB}=\)\(\widehat{AHB}\) (40o=40o)
a) Xét tam giác AHB có: ^AHB = 90o (AH vuông góc với BC).
=> Tam giác AHB vuông tại H.
=> ^B + ^HAB = 90o.
Mà ^B = 60o (gt).
=> ^HAB = 30o.
b) Xét tam giác HAD có: AD = AH (gt).
=> Tam giác HAD cân tại A.
Mà AI là trung tuyến (I là trung điểm của HD).
=> AI là phân giác ^HAD.
=> ^IAH = ^IAD.
c) Xét tam giác HAK và tam giác DAK có:
+ AH = AD (gt).
+ ^KAH = ^KAD (do ^IAH = ^IAD).
+ AK chung.
=> Tam giác HAK = Tam giác DAK (c - g - c).
=> ^AHK = ^ADK (2 góc tương ứng).
Mà ^AHK = 90o (AH vuông góc với BC).
=> ^ADK= 90o.
=> AD vuông góc KD.
Mà AD vuông góc AB (do tam giác ABC vuông tại góc A).
=> AB // KD (Từ vuông góc đến //).
c) Ta có: ^HAB + ^IAH + ^IAD = 90o (do tam giác ABC vuông tại góc A).
<=> ^HAB + 2^IAH = 90o.
Thay số: 30o + 2^IAH = 90o.
<=> ^IAH = 30o.
=> ^IAH = ^HAB = 30o.
Ta có: HA = HE (gt). => H là trung điểm của AE.
Xét tam giác AKE có:
+ HK là đường cao (AH vuông góc với HK).
+ HK là đường trung tuyến (H là trung điểm của AE).
=> Tam giác AKE cân tại K.
=> ^IAH = ^E (Tính chất tam giác cân).
Mà ^IAH = ^HAB (cmt).
=> ^E = ^HAB. => AB // KE (do 2 góc ở vị trí so le trong).
Mà AB // KD (cmt).
=> 3 điểm D, K, E thẳng hàng (đpcm).
2:
a: ΔABC cân tại A có AI là trung tuyến
nên AI vuông góc BC
b: AB=AC=10cm
\(cosBAC=\dfrac{10^2+10^2-12^2}{2\cdot10\cdot10}=\dfrac{7}{25}\)
=>góc BAC\(\simeq\)74 độ
Đề thiếu rồi bạn. Bạn phải nói đề bài cho trước cái gì đã chứ
a) Trong tam giác ABC có góc A + góc B + góc C = 180 độ
\(\Rightarrow\) góc B + góc C = 180 độ - 100 độ = 80 độ
Góc B = (80 + 50) : 2 = 65 (độ)
Góc C = 80 - 65 = 15 (độ)
b) Trong tam giác ABC có góc A + góc B + góc C = 180 độ
\(\Rightarrow\) góc B + góc C = 180 độ - 75 độ = 105 (độ)
Cách 1
Góc B = 105 : (1 + 2) . 2 = 70 (độ)
Góc C = 105 - 70 = 35 (độ)
Cách 2
Gọi số đo góc B, góc C lần lượt là x,y
\(x=2y\Rightarrow\frac{x}{2}=\frac{y}{1}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có
\(\frac{x}{2}=\frac{y}{1}=\frac{x+y}{2+1}=\frac{105}{3}=35\)
\(\Rightarrow\) x = 35.2 = 70; y = 35.1 = 35
Vậy số đo góc B, góc C lần lượt là 70 độ; 35 độ
Bài này chắc không cần vẽ hình đâu
c: Xét ΔAHB vuông tại H có HM là đường cao
nên \(AM\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HN là đường cao
nên \(AN\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)
a: Xét ΔAMB vuông tại M và ΔAMC vuông tại M có
AB=AC
AM chung
Do đó: ΔABM=ΔACM
b: Xét ΔABM vuông tại M có \(AB^2=MB^2+AM^2\)
hay MB=9(cm)
c: Xét ΔAHM vuông tại H và ΔAKM vuông tại K có
AM chung
\(\widehat{HAM}=\widehat{KAM}\)
Do đó: ΔAHM=ΔAKM
Suy ra: AH=AK
d: Xét ΔABC có AH/AB=AK/AC
nên HK//BC
a) Ez bạn tự làm nha, mình làm sơ sơ cũng 3-4 cách rồi.:)
b) Tam giác ABC cân tại A có đường p/g góc A xuất phát từ đỉnh đồng thời là đường trung trực nên \(AD\perp BC\). và BD = CD = BC/2
Xét tam giác ABD vuông tại D (chứng minh trên), theo định lí Pythagoras:
\(AB^2=BD^2+DA^2\Leftrightarrow10^2=\frac{BC^2}{4}+DA^2\)
\(=36+DA^2\Rightarrow AD=8\) (cm) (khúc này có tính nhầm gì thì tự sửa lại nha!)
Theo đề bài ta có AB = AC = 10 < BC = 12
Hay AC < BC. Theo quan hệ giữa góc và cạnh đối diện trong tam giác ABC ta có \(\widehat{ABC}< \widehat{BAC}\) (Cái khúc này không chắc, sai thì thôi)
c) Hướng dẫn:
\(\Delta\)EDB = \(\Delta\)FDC (cạnh huyền - góc nhọn)
Suy ra EB = FC. Từ đó suy ra AE = AF.
Suy ra tam giác AEF cân tại A suy ra \(\widehat{AEF}=\frac{180^o-\widehat{A}}{2}\) (1)
Mặt khác tam giác ABC cân tại A nên \(\widehat{ABC}=\frac{180^o-\widehat{A}}{2}\) (2)
Từ (1) và (2) suy ra đpcm
Hình vẽ đâu rồi bạn?