trong mặt phẳng tọa độ Oxy , cho các đường tròn (C1) và (C2) lần lượt có phương trình :
(C1) : x2 + y2 - 4x + 5y +1 = 0 .
(C1) : x2 + y2 + 10y - 5 = 0 .
viết phương trình ảnh của mỗi đường tròn trên qua phép đối xứng có trục Oy
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án D
- Ta có :
(C1) tâm I1(0;2) và R1= 3; (C2) tâm I2( 3;-4) và R2= 3
- Nhận xét : không cắt C2
- Gọi d: ax+ by+ c= 0 là tiếp tuyến chung , thế thì : d(I1; d) = R1 và d (I2; d) = R2
- Trường hợp: a= 2b thay vào (1):
- Do đó ta có hai đường thẳng cần tìm :
- Trường hợp : thay vào :
-Có 2 đường thẳng : d3: 2x- 1 = 0 và d4: 6x + 8y -1= 0.
Có tất cả 4 tiếp tuyến chung.
Đáp án D
Ta có:
C 1 : x − 1 2 + y − 1 2 = 4 ⇒ R 1 = 2 ; C 2 : x + 6 2 + y − 8 2 = 100 ⇒ R 2 = 10
⇒ k = R 2 R 1 = 10 2 = 5.
Đáp án D
Ta có:
C 1 : x − 1 2 + y − 1 2 = 4
⇒ R 1 = 2 ; C 2 : x + 6 2 + y − 8 2 = 100 ⇒ R 2 = 10
k = R 1 R 2 = 10 2 = 5
Đường tròn C 1 có tâm I 1 1 ; 2 và bán kính R 1 = 1 .
Đường tròn C 2 có tâm I 2 - 1 ; 0 và bán kính R 2 = 1 .
Chọn B
Đáp án A
- Từ giả thiết : đường tròn (C1) tâm I(0;0); R = 13 đường tròn (C2) tâm J( 6;0) và R’= 5
- Gọi đường thẳng d qua A có véc tơ chỉ phương:
- d cắt (C1) tại A,B:
Tương tự d cắt (C2) tại A; C thì tọa độ của A; C là nghiệm của hệ :
- Nếu 2 dây cung bằng nhau thì A là trung điểm của A; C .Từ đó ta có phương trình :
Vậy có 2 đường thẳng: d: x-2 = 0 và d’: 2x -3y + 5= 0.