K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 4 2019

Đáp án A

- Từ giả thiết : đường tròn (C1) tâm  I(0;0); R = 13  đường tròn (C2) tâm J( 6;0) và R’= 5

- Gọi đường thẳng d qua A có véc tơ chỉ phương:


-  d cắt (C1)  tại A,B:

 Tương tự d cắt (C2) tại A; C thì tọa độ của A; C là nghiệm của hệ :

- Nếu 2 dây cung bằng nhau thì A là trung điểm của A; C .Từ đó ta có phương trình :

Vậy có 2 đường thẳng: d: x-2 = 0 và  d’: 2x -3y + 5= 0.

6 tháng 11 2017

Đáp án C

- Đường thẳng d’ song song với d nên có dạng: 3x+ y+ m= 0

- IH là khoảng cách từ I đến d’:

- Xét tam giác vuông IHB:

30 tháng 11 2019

Đáp án D

Gọi d  là đường thẳng qua M có véc tơ chỉ phương:

- Đường tròn (C1) tâm I1 (1;1) và R1= 1

  Đường tròn (C2) : tâm I2( -2;0) và R2= 3

- Nếu d cắt  (C1) tại A :

- Nếu d cắt (C2)  tại B:

- Theo giả thiết: MA= 2 MB nên MA2= 4 MB2 (*)

- Ta có :

11 tháng 4 2019

Đáp án B

Đường tròn (C) có tâm I( 1; -3) và R= 2

 có phương trình  4x- 3y+ m= 0.

Vẽ

Vậy:

Chọn B

20 tháng 9 2019

Đáp án C

18 tháng 4 2021

 

M N I (d) H

gọi M,N là hai điểm cắt đg tròn tâm I 

kẻ IH vuông góc với MN ,theo đề bài ta có MN =6 => MH=3 

độ dài từ tâm I đến (d) =\(\dfrac{\left|2.3-5.-1+18\right|}{\sqrt{2^2+\left(-5\right)^2}}=\sqrt{29}\)

Áp dụng pytago vào tam giác vuông IMH ta có 

\(IM=\sqrt{IH^2+MH^2}=\sqrt{38}\)

vậy pt đg tròn là \(\left(x-3\right)^2+\left(y+1\right)^2=\left(\sqrt{38}\right)^2\)( tới đây bạn tự khai triển ra nha 

b ) cách làm tương tự 

2 .

I N M H P

MN max khi nó là đường kính > nó phải đi qua điểm I 

\(\overrightarrow{uIA}=\left(4;-2\right)=>n\overrightarrow{IA}=\left(2;4\right)\)

ptđt \(\Delta:2\left(x-3\right)+4\left(y-0\right)=0\)

MN min 

ta có MN=2HM 

trg tam giác vuông IHMtheo pytago ta có  \(HM=\sqrt{IA^2-IH^2}\)có  IA là bán kính ( cố định ) => IH max thì MN min 

lại xét tam giác IHP trong tam giác IHP thì có IP là cạch huyền mà trg tam giác cạc huyền là cạch lớn nhất nên IH max khi điểm H trùng với điểm P .

 

 

18 tháng 4 2021

vậy toạ độ A trùng với P nên \(u\overrightarrow{IP}=\left(4;-2\right)=n\overrightarrow{\Delta}\)

ptđt là \(4\left(x-3\right)-2\left(y-0\right)=0\)

mình trình bày hơi tệ bạn thông cảm nha !

1: Gọi I(0,y) là tâm cần tìm

Theo đề, ta có: IA=IB

=>\(\left(0-3\right)^2+\left(5-y\right)^2=\left(1-0\right)^2+\left(-7-y\right)^2\)

=>y^2-10y+25+9=y^2+14y+49+1

=>-10y+34=14y+50

=>-4y=16

=>y=-4

=>I(0;-4)

=>(x-0)^2+(y+4)^2=IA^2=90

2: Gọi (d1) là đường thẳng cần tìm

Vì (d1)//(d) nên (d1): 4x+3y+c=0

Theo đề, ta có: d(I;(d1))=3 căn 10

=>\(\dfrac{\left|0\cdot4+\left(-4\right)\cdot3+c\right|}{5}=3\sqrt{10}\)

=>|c-12|=15căn 10

=>\(\left[{}\begin{matrix}c=15\sqrt{10}+12\\c=-15\sqrt{10}+12\end{matrix}\right.\)