K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 8 2016

mũ 4 hay nhan 4 vay

 

 

15 tháng 8 2016

ta có:

X4 z4 y luôn>0

x-y>=\(\sqrt{2xy}\)  >0

tương tự z-x,  y-z  =>A luôn dương

 

16 tháng 8 2016

bạn cho mk hỏi cái dòng thứ 2 nghĩa là gì ?

 

24 tháng 7 2016

\(A=x^4\left(y-z\right)+y^4\left(z-x\right)+z^4\left(x-y\right)\)

\(=x^4y-x^4z+y^4z-y^4x+z^4\left(x-y\right)\)

\(=xy\left(x^3-y^3\right)-z\left(x^4-y^4\right)+z^4\left(x-y\right)\)

\(=xy\left(x-y\right)\left(x^2+xy+y^2\right)-z\left(x-y\right)\left(x^3+x^2y+xy^2+y^3\right)+z^4\left(x-y\right)\)

\(=\left(x-y\right)\left[xy\left(x^2+xy+y^2\right)-z\left(x^3+x^2y+xy^2+y^3\right)+z^4\right]\)

\(=\left(x-y\right)\left(x^3y+x^2y^2+xy^3-x^3z-x^2yz-xy^2z-y^3z+z^4\right)\)

\(=\left(x-y\right)\left[x^3\left(y-z\right)+x^2y\left(y-z\right)+xy^2\left(y-z\right)-z\left(y^3-z^3\right)\right]\)

\(=\left(x-y\right)\left[x^3\left(y-z\right)+x^2y\left(y-z\right)+xy^2\left(y-z\right)-z\left(y-z\right)\left(y^2+yz+z^2\right)\right]\)

\(=\left(x-y\right)\left(y-z\right)\left[x^3+x^2y+xy^2-z\left(y^2+yz+z^2\right)\right]\)

\(=\left(x-y\right)\left(y-z\right)\left(x^3+x^2y+xy^2-y^2z-yz^2-z^3\right)\)

\(=\left(x-y\right)\left(y-z\right)\left[x^3-z^3+y\left(x^2-z^2\right)+y^2\left(x-z\right)\right]\)

\(=\left(x-y\right)\left(y-z\right)\left[\left(x-z\right)\left(x^2+xz+z^2\right)+y\left(x-z\right)\left(x+z\right)+y^2\left(x-z\right)\right]\)

\(=\left(x-y\right)\left(y-z\right)\left(x-z\right)\left[x^2+xz+z^2+y\left(x+z\right)+y^2\right]\)

\(=\left(x-y\right)\left(y-z\right)\left(x-z\right)\frac{2\left(x^2+xz+z^2+xy+yz+y^2\right)}{2}\)

\(=\left(x-y\right)\left(y-z\right)\left(x-z\right)\frac{x^2+2xz+z^2+x^2+xy+y^2+y^2+yz+z^2}{2}\)

\(\left(x-y\right)\left(y-z\right)\left(x-z\right)\frac{\left(x+z\right)^2+\left(x+y\right)^2+\left(y+z\right)^2}{2}\)

\(Ta\)\(có\)\(x>y>z\Rightarrow\left(x-y\right);\left(y-z\right);\left(x-z\right)>0\)

                 \(\left(x+z\right)^2;\left(y+z\right)^2;\left(x+y\right)^2\ge0\)

\(\Rightarrow A>o\Rightarrow A\)\(luôn\)\(dương\)

16 tháng 7 2019

Câu hỏi của Trần Thùy Dung - Toán lớp 8 - Học toán với OnlineMath

Vào tham khảo nha !

Không hiển thị màu xanh thì bạn nhấn vào câu hỏi tương tự ý !

16 tháng 7 2019

Lick :

https://olm.vn/hoi-dap/detail/54197989738.html

Cố mà đánh nha !

13 tháng 7 2023

\(\left(x+y+z\right)^2=x^2+y^2+z^2+2xy+2yz+2xz\) Thay x+y+z=0 vào

\(\Rightarrow0=x^2+y^2+z^2+2\left(xy+yz+xz\right)\)

\(\Leftrightarrow x^2+y^2+z^2=-2\left(xy+yz+xz\right)\) (1)

Ta có

\(\left(x^2+y^2+z^2\right)^2=x^4+y^4+z^4+2x^2y^2+2y^2z^2+2x^2z^2\) (2)

Bình phương 2 vế của (1)

\(\left(x^2+y^2+z^2\right)^2=4\left(xy+yz+xz\right)^2\)

\(\Leftrightarrow\left(x^2+y^2+z^2\right)^2=4\left(x^2y^2+y^2z^2+x^2z^2+2xy^2z+2xyz^2+2x^2yz\right)\)

\(\Leftrightarrow\left(x^2+y^2+z^2\right)^2=4\left[x^2y^2+y^2z^2+x^2z^2+2xyz\left(x+y+z\right)\right]\)

Do x+y+z=0 nên

\(\left(x^2+y^2+z^2\right)^2=4\left(x^2y^2+y^2z^2+x^2z^2\right)\)

\(\Rightarrow\dfrac{\left(x^2+y^2+z^2\right)^2}{2}=2x^2y^2+2y^2z^2+2x^2z^2\) (3)

Thay (3) vào (2)

\(\left(x^2+y^2+z^2\right)^2=x^4+y^4+z^4+\dfrac{\left(x^2+y^2+z^2\right)^2}{2}\)

\(\Rightarrow2\left(x^4+y^4+z^4\right)=\left(x^2+y^2+z^2\right)^2\) (đpcm)

 

 

 

2 tháng 11 2019

\(A=x^4\left(y-z\right)+y^4\left(z-x\right)+z^4\left(x-y\right)\)

\(A=x^4\left(y-z\right)+y^4\left(z-x\right)-z^4\left[\left(y-z\right)+\left(z-x\right)\right]\)

\(A=x^4\left(y-z\right)-z^4\left(y-z\right)+y^4\left(z-x\right)-z^4\left(z-x\right)\)

\(A=\left(y-z\right)\left(x^4-z^4\right)+\left(z-x\right)\left(y^4-z^4\right)\)

\(A=\left(y-z\right)\left(x-z\right)\left(x+z\right)\left(x^2+z^2\right)-\left(x-z\right)\left(y-z\right)\left(y+z\right)\left(y^2+z^2\right)\)

\(A=\left(y-z\right)\left(x-z\right)\left(x^3+xz^2+x^2z+z^3-y^3-yz^2-y^2z-z^3\right)\)

\(A=\left(y-z\right)\left(x-z\right)\left(x-y\right)\left(x^2+xy+y^2+z^2+zx+yz\right)\)

\(A=\frac{1}{2}\left(x-y\right)\left(y-z\right)\left(x-z\right)\left[\left(x+y\right)^2+\left(y+z\right)^2+\left(z+x\right)^2\right]\)

Vì \(x>y>z\Rightarrow A>0\)

31 tháng 3 2023

mình chịu

31 tháng 3 2023

không biết làm

29 tháng 6 2017

Áp dụng BĐT Cauhy-Schwarz ta có:

\(A=x^4+y^4+z^4\ge\frac{\left(x^2+y^2+z^2\right)^2}{3}\)

\(\ge\frac{\left(\frac{x+y+z}{3}\right)^2}{3}=\frac{\frac{1}{9}}{3}=\frac{1}{27}\)

Xảy ra khi x=y=z=1/3

8 tháng 9 2019

Ta co:\(x^2+y^2+z^2\ge\frac{\left(x+y+z\right)^2}{3}=\frac{9}{3}=3\) ; \(xyz\le\frac{\left(x+y+z\right)^3}{27}=\frac{27}{27}=1\)

\(P=x^4+y^4+z^4+12\left(1-z-y+yz-x+xz+xy-xyz\right)\)

\(=x^4+y^4+z^4+12-12xyz-12\left(x+y+z\right)+12\left(xy+yz+zx\right)\)

\(\ge\frac{\left(x^2+y^2+z^2\right)^2}{3}+12-12.\frac{\left(x+y+z\right)^3}{27}-12.3+12\left(xy+yz+zx\right)\)

\(\ge3+12-12.1-36+4.\left(xy+yz+zx\right)\left(x+y+z\right)\)

\(\ge-33+4.\left(xy+yz+zx\right)\left(\frac{x+y+z}{xyz}\right)\)

\(=-33+4.\left(xy+yz+zx\right)\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\right)\ge-33+4\left(xy.\frac{1}{xy}+yz.\frac{1}{yz}+zx.\frac{1}{zx}\right)^2\)

\(=-33+4\left(1+1+1\right)^2=-33+36=3\)

Dau '=' xay ra khi \(x=y=z=1\)

Vay \(P_{min}=3\)khi \(x=y=z=1\)