K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 8 2021

\(8a^4-2a^2-4a+2\)

\(=2\cdot\left(4a^4-a^2-2a+1\right)\)

\(=2\cdot\left(2a-1\right)\cdot\left(2a^3+a^2-1\right)\)

\(8a^4-2a^2-4a+2\)

\(=2\left(4a^4-a^2-2a+1\right)\)

\(=2\left(4a^4-2a^3+2a^3-a^2-2a+1\right)\)

\(=2\left(2a-1\right)\left(2a^3+a^2-1\right)\)

12 tháng 8 2023

\(2a^2+8b^2-8ab\)

\(=2\left(a^2-4ab+4b^2\right)\)

\(=2\left(a-2b\right)^2\)

12 tháng 8 2023

cám ơn nhaaaaa!!!!

1 tháng 8 2016

\(4a^2-4a+1-4b^2\)

<=>\(\left(2a-1\right)^2-4b^2\)

<=>\(\left(2a-1+2b\right)\left(2a-1-2b\right)\)

\(4a^2-4a+1-4b^2\)

\(=\left(2a-1\right)^2-4b^2\)

\(=\left(2a-1+2b\right)\left(2a-1-2b\right)\)

b: \(2x^2-7xy+3y^2+x-3y\)

\(=2x^2-6xy-xy+3y^2+x-3y\)

\(=2x\left(x-3y\right)-y\left(x-3y\right)+\left(x-3y\right)\)

\(=\left(x-3y\right)\left(2x-y+1\right)\)

AH
Akai Haruma
Giáo viên
29 tháng 8 2021

Lời giải:
a.

Đặt $2a^2+5ab-3b^2-7b-2=(a+mb+n)(2a+pb+k)$ với $m,n,p,k$ nguyên 

$\Leftrightarrow 2a^2+5ab-3b^2-7b-2=2a^2+ab(2m+p)+mpb^2+a(k+2n)+b(km+np)+kn$ 

Đồng nhất hệ số:

\(\left\{\begin{matrix} 2m+p=5\\ mp=-3\\ k+2n=0\\ km+np=-7\\ kn=-2\end{matrix}\right.\)

Giải hpt này ta thu được $m=3; n=1; p=-1; k=-2$

Vậy $2a^2+5ab-3b^2-7b-2=(a+3b+1)(2a-b-2)$

b. Đa thức không phân tích được thành nhân tử

28 tháng 8 2021

lm theo pp đồng nhất hệ số ạ

b: Ta có: \(2x^2-7xy+3y^2+x-3y\)

\(=2x^2-6xy-xy+3y^2+x-3y\)

\(=2x\left(x-3y\right)-y\left(x-3y\right)+\left(x-3y\right)\)

\(=\left(x-3y\right)\left(2x-y+1\right)\)

24 tháng 8 2021

`4a+1(a<=0=>-a>=0)`

`=1-4(-a)`

`=1-(2sqrt{-a})^2`

`=(1-2sqrt{-a})(1+2sqrt{-a})`

24 tháng 8 2021

Với a nhỏ hơn 0 nhá 

24 tháng 7 2017

a2 – b2 – 4a + 4

= a2 – 4a + 4 – b2

= (a – 2)2 – b2

= (a – 2 + b)(a – 2 – b)

= (a + b – 2)(a – b – 2)

29 tháng 9 2019

\(a^3+4a^2+4a+3\)

\(=a^3+a^2+3a^2+3a+a+3\)

\(=\left(a^3+a^2+a\right)+\left(3a^2+3a+3\right)\)

\(=a\left(a^2+a+1\right)+3\left(a^2+a+1\right)\)

\(=\left(a+3\right)\left(a^2+a+1\right)\)