Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2a^2+8b^2-8ab\)
\(=2\left(a^2-4ab+4b^2\right)\)
\(=2\left(a-2b\right)^2\)
\(4a^2-4a+1-4b^2\)
<=>\(\left(2a-1\right)^2-4b^2\)
<=>\(\left(2a-1+2b\right)\left(2a-1-2b\right)\)
\(4a^2-4a+1-4b^2\)
\(=\left(2a-1\right)^2-4b^2\)
\(=\left(2a-1+2b\right)\left(2a-1-2b\right)\)
b: \(2x^2-7xy+3y^2+x-3y\)
\(=2x^2-6xy-xy+3y^2+x-3y\)
\(=2x\left(x-3y\right)-y\left(x-3y\right)+\left(x-3y\right)\)
\(=\left(x-3y\right)\left(2x-y+1\right)\)
Lời giải:
a.
Đặt $2a^2+5ab-3b^2-7b-2=(a+mb+n)(2a+pb+k)$ với $m,n,p,k$ nguyên
$\Leftrightarrow 2a^2+5ab-3b^2-7b-2=2a^2+ab(2m+p)+mpb^2+a(k+2n)+b(km+np)+kn$
Đồng nhất hệ số:
\(\left\{\begin{matrix} 2m+p=5\\ mp=-3\\ k+2n=0\\ km+np=-7\\ kn=-2\end{matrix}\right.\)
Giải hpt này ta thu được $m=3; n=1; p=-1; k=-2$
Vậy $2a^2+5ab-3b^2-7b-2=(a+3b+1)(2a-b-2)$
b. Đa thức không phân tích được thành nhân tử
b: Ta có: \(2x^2-7xy+3y^2+x-3y\)
\(=2x^2-6xy-xy+3y^2+x-3y\)
\(=2x\left(x-3y\right)-y\left(x-3y\right)+\left(x-3y\right)\)
\(=\left(x-3y\right)\left(2x-y+1\right)\)
a2 – b2 – 4a + 4
= a2 – 4a + 4 – b2
= (a – 2)2 – b2
= (a – 2 + b)(a – 2 – b)
= (a + b – 2)(a – b – 2)
\(a^3+4a^2+4a+3\)
\(=a^3+a^2+3a^2+3a+a+3\)
\(=\left(a^3+a^2+a\right)+\left(3a^2+3a+3\right)\)
\(=a\left(a^2+a+1\right)+3\left(a^2+a+1\right)\)
\(=\left(a+3\right)\left(a^2+a+1\right)\)
\(a^3+4a^2-7a-10\)
\(=\left(a^3+5a^2\right)-\left(a^2+5a\right)-\left(2a+10\right)\)
\(=a^2\left(a+5\right)-a\left(a+5\right)-2\left(a+5\right)\)
\(=\left(a^2-a-2\right)\left(a+5\right)\)
\(=\left(a^2-2a+a-2\right)\left(a+5\right)\)
\(=\left[a\left(a-2\right)+\left(a-2\right)\right]\left(a+5\right)\)
\(=\left(a+1\right)\left(a-2\right)\left(a+5\right)\)
\(8a^4-2a^2-4a+2\)
\(=2\cdot\left(4a^4-a^2-2a+1\right)\)
\(=2\cdot\left(2a-1\right)\cdot\left(2a^3+a^2-1\right)\)
\(8a^4-2a^2-4a+2\)
\(=2\left(4a^4-a^2-2a+1\right)\)
\(=2\left(4a^4-2a^3+2a^3-a^2-2a+1\right)\)
\(=2\left(2a-1\right)\left(2a^3+a^2-1\right)\)