\(\sqrt[10]{a}\)+4a...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 8 2018

Đặt:   \(A=\sqrt{3+\sqrt{8}}\)

=>  \(\sqrt{2}A=\sqrt{6+2\sqrt{8}}=\sqrt{\left(2+\sqrt{2}\right)^2}=2+\sqrt{2}=\sqrt{2}\left(\sqrt{2+1}\right)\)

=>  \(A=\sqrt{2}+1\)

\(3+\sqrt{18}+\sqrt{3+\sqrt{8}}=3+3\sqrt{2}+\sqrt{2}+1\)

\(=3\left(\sqrt{2}+1\right)+\left(\sqrt{2}+1\right)=4.\left(\sqrt{2}+1\right)\)

17 tháng 8 2018

dòng thứ 2 là \(\sqrt{2}\left(\sqrt{2}+1\right)\) nhé

19 tháng 7 2018

\(8-\frac{x\sqrt{x}}{3}\)

\(=8-\frac{\sqrt{x^3}}{3}\)

\(=8-\frac{\left(\sqrt{x}\right)^3}{3}\)

\(=8-\frac{\left(\sqrt{x}\right)^3}{\left(\sqrt[3]{3}\right)^3}\)

\(=2^3-\left(\frac{\sqrt{x}}{\sqrt[3]{3}}\right)^3\)

\(=\left(2-\frac{\sqrt{x}}{\sqrt[3]{3}}\right)\left(4+\frac{2\sqrt{x}}{\sqrt[3]{3}}+\frac{x}{\left(\sqrt[3]{3}\right)^2}\right)\)

4 tháng 7 2017

\(x-y=\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)\)

\(a\sqrt{b}+b\sqrt{a}=\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)\)

2 tháng 5 2017

\(xy-y\sqrt{x}+\sqrt{x}-1\)

\(=y\left(x-\sqrt{x}\right)+\left(\sqrt{x}-1\right)\)

\(=y\sqrt{x}\left(\sqrt{x}-1\right)+\left(\sqrt{x}-1\right)\)

\(\left(\sqrt{x}-1\right)\left(y\sqrt{x}+1\right)\)

29 tháng 9 2020

\(xy-y\sqrt{x}+\sqrt{x}-1\)

\(=\left(\sqrt{x}\right)^2.y-y\sqrt{x}+\sqrt{x}-1\)

\(=y\sqrt{x}\left(\sqrt{x}-1\right)+\sqrt{x}-1\)

\(=\left(\sqrt{x}-1\right)\left(y\sqrt{x}+1\right)\)

23 tháng 12 2016

a, \(1-a\sqrt{a}\)

\(=\left[1-\left(\sqrt{a}\right)^3\right]\)

\(=\left(1-\sqrt{a}\right)\left[\left(\sqrt{a}\right)^2+1.\sqrt{a}+1^2\right]\)

\(=\left(1-\sqrt{a}\right)\left(a+\sqrt{a}+1\right)\)

b, \(x-2\sqrt{x-1}\)

\(=\left(x-1\right)-2\sqrt{x-1}+1\)

\(=\left[\left(\sqrt{x-1}\right)-1\right]^2\)

1 tháng 7 2019

Lời giải :

\(\sqrt{a-b}-\sqrt{a^2-b^2}\)

\(=\sqrt{a-b}-\sqrt{a-b}\cdot\sqrt{a+b}\)

\(=\sqrt{a-b}\left(1-\sqrt{a+b}\right)\)

11 tháng 10 2018

a.\(\sqrt{x}\left(\sqrt{x}-2\right)\)

b.\(\left(3-\sqrt{x}\right)\left(2+\sqrt{x}\right)\)