cho tam giác ABC có A=90, BC=2a.Đường cao AH. Điểm A thay đổi sao cho BAC=90,BC=2a.Tam giác ABC phải thỏa mãn điều kiện gì để diện tích tam giác AHO lớn nhất?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi AM là đường trung tuyến kẻ từ A xuống cạnh BC ( M thuộc BC)
Ta có : \(S_{ABC}=\frac{1}{2}BC.AH\)
Vì BC cố định (tức là có độ dài không đổi) nên diện tích tam giác ABC đạt giá trị lớn nhất khi AH đạt giá trị lớn nhất.
Mặt khác, ta luôn có \(AH\le AM=\frac{1}{2}BC\) (hằng số)
Vậy AH đạt giá trị lớn nhất bằng \(AM=\frac{BC}{2}\)
Khi đó diện tích lớn nhất của tam giác ABC là \(S_{ABC}=\frac{1}{2}.BC.\frac{BC}{2}=\frac{BC^2}{4}\)
Vậy khi H trùng với điểm M thì tam giác ABC có diện tích lớn nhất, tức là tam giác ABC vuông cân tại A.
a: Xét tứ giác BGCE có
H là trung điểm của BC
H là trung điểm của GE
Do đó; BGCE là hình bình hành
mà GE⊥CB
nên BGCE là hình thoi
=>BG=GC=CE=BE
b: Ta có: AG=2GH
mà GE=2GH
nên GA=GE
c: BC=8cm nên BH=4(cm)
\(AB=\sqrt{9^2+4^2}=\sqrt{97}\left(cm\right)\)
Ta có, tam giác AH là đường cao của tam giác cân ABC => góc AHB=90 độ=> góc BHE=90 độ
Xét tam giác BHG và tam giác BHE, ta có :
BH chung
GH= EH (gt)
góc AHB= góc BHE (=90 độ)
=> Tam giác BHG = Tam giác BHE
=> BG =BH ( cặp cạnh tương ứng )
=> Ta cần có GE = BG = BH thì tam giác BBE cân
O là điểm nào em?
cho tam giác ABC có A=90, BC=2a.Đường cao AH. O là trung điểm BC .Điểm A thay đổi sao cho BAC=90,BC=2a.Tam giác ABC phải thỏa mãn điều kiện gì để diện tích tam giác AHO lớn nhất?