K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 4 2016

Ta có,  tam giác AH là đường cao của tam giác cân ABC => góc AHB=90 độ=> góc BHE=90 độ

Xét tam giác BHG và tam giác BHE, ta có :

BH chung

GH= EH (gt)

góc AHB= góc BHE (=90 độ)

=> Tam giác BHG = Tam giác BHE

=> BG =BH ( cặp cạnh tương ứng )

=>  Ta cần có GE = BG = BH thì tam giác BBE cân

12 tháng 4 2016

bạn ơi vẽ hình nha để mìh giải gíup bạn nhanh hơn

18 tháng 4 2016

a, + Xét tg HBG và tg HCG vuông tại H

Có : HG cạnh chung

Mà : AH là đường cao trong tg cân nên : 

AH là đường trung tuyến và là đường fan giác

=> BH=HC (vì AH là đường trung tuyến)

Nên: tg HBG=HCG (ch-cgv)

Vậy : BG=GC ( 2 cạnh tương ứng )         (1)

+ Xét tg BHE và tg HCE vuông tại H 

Có : HE cạnh chung

BH=HC 

Nên : tg BHE= tg HCE (ch-cgv)

Vậy : BE=EC (2 cạnh tương ứng )                    (2)

+Xét tg HGC và tg HCE vuông tại H

Có : HC cạnh chung

HG=HE

Nên : tg HGC=tg HCE 

Vậy : GC=ce  (2 cạnh tương ứng)                  (3)

+Xét tg BHG và tg BHE vuông tại H

BH cạnh chung

HG=HE 

nên : tg BHG = tg BHE

Vậy : BG=BE ( 2 cạnh tương ứng )                    (4)

Từ (1)(2)(3)  và (4) suy ra :BG=CG=BE=CE

b,Xét tg ABE và tg ACE 

Có : AB= AC ( tg ABC cân tại A)

BE=EC( cmt)

AE cạnh chung

Vậy : tg ABE = tg ACE (ccc)

c, k bt

d, k bt

e, Trong tg GBE có :

BG=BE 

Mà trong tam giác có 2 cạnh bằng nhau thì tg đó là tg cân hoặc đều

Nên : tg GBE là tg đều .

Vậy : đpcm 

18 tháng 4 2016

A B C E H G

a: Xét tứ giác BGCE có

H là trung điểm của BC

H là trung điểm của GE

Do đó; BGCE là hình bình hành

mà GE⊥CB

nên BGCE là hình thoi

=>BG=GC=CE=BE

b: Ta có: AG=2GH

mà GE=2GH

nên GA=GE

c: BC=8cm nên BH=4(cm)

\(AB=\sqrt{9^2+4^2}=\sqrt{97}\left(cm\right)\)

9 tháng 5 2020

1.

a) Xét ΔADE có :

HE là đường trung tuyến của AD HA=HD )(1)

Ta thấy HC=12BC ( AH là đường trung tuyến của BC )

Mà BC = CE (gt )

⇒HC=12CE (2)

Từ (1) và (2) ⇒C là trọng tâm của ΔADE

b) Hơi khó đấy :)

Xét ΔAHB và ΔAHC có :

HAHA chung

HB=HC ( AH là đường trung tuyến của BC )

AB=AC( ΔABC cân tại A )

Do đó : ΔAHB=ΔAHC(c−c−c)

⇒AHBˆ=AHCˆ( hai góc tương ứng )

Mà AHBˆ+AHCˆ=1800

⇒AHB^=AHC^=1800/2=90o

Xét ΔAHEvà ΔHED có :

HEHE chung

HA=HD( HE là đường trung tuyến của AD )

AHEˆ=DHEˆ(=900)

Do đó : ΔAHE=ΔDHE ( hai cạnh góc vuông )

⇒AEHˆ=DEHˆ ( góc tương ứng ) (*)

Vì C là trọng tâm của ΔAED là đường trung tuyến của DE )

Xét vuông tại H có : HM là đường trung tuyến nối từ đỉnh H đến DE

⇒HM=DM (1)

Lưu ý : Trong tam giác vuông , đường trung tuyến ứng với cạnh huyền bằng một nửa cạnh huyền . Tức HM=12DE Mà 12DE=DM⇒HM=DM

Trở lại vào bài :

Mặt khác DM=ME(cmt)(2)

Từ (1) và (2) ⇒HM=ME

⇒ΔHME⇒ΔHME cân tại M

⇒MHEˆ=MEHˆ

Dễ thấy MEHˆ=HEAˆ(cmt)

⇒MHEˆ=HEAˆ

mà hai góc này ở vị trí so le trong

⇒HM⇒HM//AE(đpcm)

2.

a) ta có:  \(\Delta OAB,\Delta OAC\) có diện tích bằng nhau và cùng đáy OA nên khoảng cách từ B , C kẻ đến OA 

nên BH=CK

b) gọi AK giao với BC tại M

Xét \(\Delta BHM\)và   \(\Delta CKM\)  có: 

..........

3.

a. xét tgiac ADC và tgiac ADB có

AD là cạnh chung

góc DAB = góc DAC(gt)

AB=AC(gt)

vậy tg ADC=tg ADB(c.g.c)

b.theo cminh cau a ta có DB=DC(2 cạnh tương ứng)

nên AD là đường trung tuyến ứng với cạnh BC mà G là trọng tâm tâm giác ABC nên A D G thẳng hàng

k mk nha thack ae

Bài 1  : 

a) Vì AH = HD => EH là đg trung tuyến của tg ADE
Khi đó C thuộc đg trung tuyến EH (1)
Do tam giác  ABC cân tại A
mà AH là đường cao của tam giác ABC
=> AH là đg trung trực của tam giác ABC
=> BH = CH
=> BH = CH = \(\frac{1}{2}\)BC
Lại do BC = CE
=> CH = \(\frac{1}{2}\) CE
hay CE = \(\frac{2}{3}\) EH (2)
Từ (1); (2) => C là trọng tâm của tam giác ADE.

b) Có : AH là đường cao của ΔABC
⇒ Góc AHC = 90
⇒ Góc DHC = 90 (kề bù)
Xét ΔAHE và ΔDHE có:
+ AH = DH (gt)
+ Góc AHE = góc DHE = 90
+ HE chung
⇒ ΔAHE = ΔDHE
⇒ Góc EAH = góc EDH (1)
Lại có: Tia AC cắt DE tại M
Mà C là trong tâm của ΔADE
⇒ AM là trung tuyến của ΔADE
⇒ M là trung điểm của DE
Mà ΔDHE là tam giác vuông tại H (do DHE = 90 )
⇒ HM là đường trung tuyến của cạnh huyền
⇒ HM = DM = EM
⇒ ΔHMD cân tại M
⇒ Góc MHD = góc MDH (2)
Từ (1) + (2) ⇒ Góc EAH = góc MHD
Mà hai góc này là hai góc đồng vị
⇒ AE // HM (đpcm)

 a: Ta có: ΔABC cân tại A

mà AH là đường cao

nên H là trung điểm của CB

=>CB=2CH

mà CB=CE

nên CE=2CH

=>\(\dfrac{EC}{EH}=\dfrac{2}{3}\)

Xét ΔEAD có

EH là đường trung tuyến

\(EC=\dfrac{2}{3}EH\)

Do đó: C là trọng tâm của ΔEAD

b: Xét ΔEAD có

C là trọng tâm

AC cắt DE tại M

Do đó: M là trung điểm của DE

Xét ΔEAD có

H,M lần lượt là trung điểm của DA,DE

=>HM là đường trung bình của ΔEAD

=>HM//AE

c: Để HM\(\perp\)AB thì AE\(\perp\)AB

=>ΔABE vuông tại A

Ta có: ΔABE vuông tại A

mà AC là đường trung tuyến

nên AC=CB=CE

=>AC=CB

mà AB=AC

nên AC=AB=BC

=>ΔABC đều

=>\(\widehat{ABC}=60^0\)

Khi ΔABC đều thì \(\widehat{HAC}=\dfrac{60^0}{2}=30^0\)

Ta có: \(\widehat{ACE}+\widehat{ACB}=180^0\)(hai góc kề bù)

=>\(\widehat{ACE}+60^0=180^0\)

=>\(\widehat{ACE}=120^0\)

Ta có: CA=CE

=>ΔCAE cân tại C

=>\(\widehat{CAE}=\widehat{CEA}=\dfrac{180^0-\widehat{ACE}}{2}=30^0\)

\(\widehat{HAE}=\widehat{HAC}+\widehat{CAE}=30^0+30^0=60^0\)

Xét ΔEAD có

EH là đường cao

EH là đường trung tuyến

Do đó: ΔEAD cân tại E

mà \(\widehat{EAD}=60^0\)

nên ΔEAD đều

Ta có: ΔABC đều

mà AH là đường cao

nên \(AH=AB\cdot\dfrac{\sqrt{3}}{2}=\dfrac{3\sqrt{3}}{2}\left(cm\right)\)

H là trung điểm của AD

=>\(AD=2\cdot AH=3\sqrt{3}\left(cm\right)\)

ΔADE đều

mà AM là đường trung tuyến

nên AM\(\perp\)DE
=>ΔAMD vuông tại M

Xét ΔAMD vuông tại M có \(cosDAM=\dfrac{AM}{AD}\)

=>\(\dfrac{AM}{3\sqrt{3}}=cos30=\dfrac{\sqrt{3}}{2}\)

=>\(AM=4,5\left(cm\right)\)

loading...  loading...  

Bài 1) 

a) Trong ∆ cân ABC có AH  là trung trực đồng thời là phân giác và trung tuyến

=> BAH = CAH 

Xét ∆ ABD và ∆ ACD ta có : 

AB = AC (∆ABC cân tại A) 

AD chung 

BAH = CAH (cmt) 

=> ∆ABD = ∆ACD (c.g.c)

=> BD = CD 

=> ∆BDC cân tại D 

* NOTE : Trong ∆ vuông BDH có DH < BD ( trong tam giác vuông ; cạnh góc vuông luôn luôn nhỏ hơn cạnh huyền )

Mà DH = HG 

=> DG < DB 

=> DG ko thể = BD và DC 

b) Xét ∆ABG và ∆ACG ta có : 

AG chung

BAH = CAH (cmt)

AB = AC (cmt)

=> ∆ABG = ∆ACG (c.g.c)(dpcm)

c) Vì AH = 9cm (gt)

Mà AD = 2/3AH 

=> AD = 6cm

=> DH = 9 - 6 = 3 cm

Mà AH là trung tuyến BC 

=> BH = HC = BC/2 = 4 cm 

Áp dụng định lý Py ta go vào ∆ vuông BHD ta có 

=> BD = 5 cm

Bài 2) Áp dụng định lý Py ta go vào ∆ vuông ABC ta có : 

BC = 10 cm

b) Xét ∆ vuông ABM và ∆ vuông BMC ta có : 

BM chung 

ABM = CBM ( BM là phân giác) 

=> ∆ABM = ∆BMC ( ch - gn )

c) Vì ∆ABM = ∆BMC (cmt)

=> AM = NM 

Xét ∆ vuông APM và ∆ MNC ta có :

AM = NM (cmt)

AMP = NMC ( đối đỉnh) 

=> ∆APM = ∆MNC ( cgv - gn )

d) Vì ∆ APM = ∆MNC (cmt)

=> PM = MC 

=> ∆MPC cân tại M

Mà K là trung điểm PC 

=> MK là trung tuyến đồng thời là trung trực và là phân giác ∆PMC 

=> MK vuông góc với PC 

=> M; K thẳng hàng 

Mà BM là phân giác ABC 

=> B ; M thẳng hàng 

=> B ; M ; K thẳng hàng