tìm số nguyên x, nếu biết:
\(4^{x+3}-3.4^{x+1}=13.4^{11}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(4^{x+3}-3.4^{x+1}=13.4^{11}\)
\(16.4^{x+1}-3.4^{x+1}=13.4^{11}\)
\(\left(16-3\right).4^{x+1}=13.4^{11}\)
\(13.4^{x+1}=13.4^{11}\)
\(\Rightarrow x+1=11\)
\(x=10\)
\(4^{x+3}-3.4^{x+1}=13.4^{11}\)
=> \(4^{x+1}.\left(4^2-3\right)=13.4^{11}\)
=> \(4^{x+1}.\left(16-3\right)=13.4^{11}\)
=> \(4^{x+1}.13=13.4^{11}\)
=> \(x+1=11\)
=> \(x=11-1=10\)
(x+3)yz - xyz = 6
=> xyz + 3yz - xyz = 6
=> 3yz = 6
=> yz = 2
TH1: với y=1 => z=2
TH2: với y=-1 => z=-2
TH3: với y=2 => z=1
TH4: với y=-2 => z=-1
Theo bài ra, ta có :
xyz= 10
=> 2x= -10
=> x=-5
Vậy (x;y;z)∈{(-5;1;2);(-5;-1;-2);(-5;-2;-1);(-5;2;1)}
Ta có : \(x.3-8:4=7\)
\(\Leftrightarrow3x-2=7\)
\(\Leftrightarrow3x=9\)
\(\Leftrightarrow x=3\)
Vậy \(x=3\)
2/
a, |a+3|=7
Chia làm 2 trường hợp
TH1: TH2:
a+3=7 a+3=-7
a=7-3 a=-7-3
a=4 a=-11
b,|a-5|=(-5)+8
|a-5|=3
Chia làm 2 truờng hợp
TH1: TH2:
a-5=3 a-5=-3
a=3+5 a=-3+5
a=8 a=2
1/
a, Cộng 2 vế với y ta được :
x-y+y > 0+y
=> x > y
b, Trừ 2 vê với y ta được :
x-y > y-y
=> x-y >0
2/
a, => a+3=-7 hoặc a+3=7
=> a=-10 hoặc a=4
b, => |a-5| = 3
=> a-5=-3 hoặc a-5=3
=> a=2 hoặc a=8
Tk mk nha
\(5^{x+4}-3.5^{x+3}=2.5^{11}\)
\(\Rightarrow5^{x+3}\left(5-3\right)=2.5^{11}\)
\(\Rightarrow5^{x+3}=5^{11}\)
\(\Rightarrow x+3=11\)
\(\Rightarrow x=8\)
\(4^{x+3}-3.4^{x+1}=13.4^{11}\)
\(\Rightarrow4^{x+1}.\left(4^2-3\right)=13.4^{11}\)
\(\Rightarrow4^{x+1}.\left(16-3\right)=13.4^{11}\)
\(\Rightarrow4^{x+1}.13=13.4^{11}\)
\(\Rightarrow x+1=11\)
\(\Rightarrow x=11-1\)
\(\Rightarrow x=10\)
\(\Rightarrow4^x\left(4^3-3.4\right)=13.4^{11}\)
\(\Rightarrow4^x.52=13.4^{11}\)
\(\Rightarrow4^x=4^{\left(-1\right)}.4^{11}\)
\(\Rightarrow4^x=4^{10}\)
=> x=10