Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(5^{x+4}-3.5^{x+3}=2.5^{11}\)
\(\Rightarrow5^{x+3}\left(5-3\right)=2.5^{11}\)
\(\Rightarrow5^{x+3}=5^{11}\)
\(\Rightarrow x+3=11\)
\(\Rightarrow x=8\)
2.3x+2+4.3x+1=10.36
2.3.3x+1+4.3x+1=10.36
6.3x+1+4.3x+1=10.36
10.3x+1=10.36
=>3x+1=36
=>x+1=6 =>x=5
Ai thấy đúng cho mình nha!
\(2.3^{x+2}+4.3^{x+1}=10.3^6\)
\(2.3^{x+2}+2^2.3^{x+1}=2.5.3^6\)
\(2.3^{x+1}\left(3+2\right)=2.5.3^6\)
\(2.3^{x+1}.5=2.5.3^6\)
\(\Rightarrow x+1=6\Rightarrow x=5\)
(x - 2/3)3 = -1/27
=> (x - 2/3)3 = (-1/3)3
=> x - 2/3 = -1/3
=> x = -1/3 + 2/3
=> x = 1/3
Từ bài ra ta có \(\left(x-\frac{2}{3}\right)^3=\left(\frac{-1}{3}\right)^3\)
\(\Rightarrow x-\frac{2}{3}=\frac{-1}{3}\)
\(\Rightarrow x=\frac{-1}{3}+\frac{2}{3}\)
\(\Rightarrow x=\frac{1}{3}\)
Vậy ... nếu đúng thì k nha
Lời giải:
1.
$3^{x+2}+4.3^{x+1}=7.3^6$
$3^{x+1}.3+4.3^{x+1}=7.3^6$
$3^{x+1}(3+4)=7.3^6$
$3^{x+1}.7=7.3^6$
$\Rightarrow 3^{x+1}=3^6$
$\Rightarrow x+1=6$
$\Rightarrow x=5$
2.
$5^{x+4}-3.5^{x+3}=2.5^{11}$
$5^{x+3}.5-3.5^{x+3}=2.5^{11}$
$5^{x+3}(5-3)=2.5^{11}$
$2.5^{x+3}=2.5^{11}$
$\Rightarrow 5^{x+3}=5^{11}$
$\Rightarrow x+3=11$
$\Rightarrow x=8$
3.
$4^{x+3}-3.4^{x+1}=13.4^{11}$
$4^{x+1}.4^2-3.4^{x+1}=13.4^{11}$
$4^{x+1}.16-3.4^{x+1}=13.4^{11}$
$13.4^{x+1}=13.4^{11}$
$\Rightarrow 4^{x+1}=4^{11}$
$\Rightarrow x+1=11$
$\Rightarrow x=10$
\(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{14}=\frac{y}{21}\)
\(\frac{y}{7}=\frac{z}{4}\Rightarrow\frac{y}{21}=\frac{z}{12}\)
\(\Leftrightarrow\frac{x}{14}=\frac{y}{21}=\frac{z}{12}=\frac{x+y-z}{14+21-12}=\frac{69}{23}=3\)
\(\Rightarrow x=52;y=63;z=36\)
\(\hept{\begin{cases}\frac{x}{2}=\frac{y}{3}\\\frac{y}{7}=\frac{z}{4}\end{cases}\Rightarrow\hept{\begin{cases}\frac{x}{14}=\frac{y}{21}\\\frac{y}{21}=\frac{z}{12}\end{cases}\Rightarrow}\frac{x}{14}=\frac{y}{21}=\frac{z}{12}}\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{x}{14}=\frac{y}{21}=\frac{z}{12}=\frac{x+y-z}{14+21-12}=\frac{69}{23}=3\)
\(\Rightarrow\hept{\begin{cases}x=3.14=42\\y=3.21=63\\z=3.12=36\end{cases}}\)
\(4^{x+3}-3.4^{x+1}=13.4^{11}\)
\(\Leftrightarrow4^x.\left(4^3-3.4\right)=13.4^{11}\)
\(\Leftrightarrow4^x.52=13.4^{11}\)
\(\Leftrightarrow\frac{4^x.52}{13}=\frac{13.4^{11}}{13}\)
\(\Leftrightarrow4^x.4=4^{11}\)
\(\Leftrightarrow4^{x+1}=4^{11}\)
\(\Leftrightarrow x+1=11\)
\(\Leftrightarrow x=10\)
Vậy : \(x=10\)
4x+3-3.4x+1=13.411
4x.43-3.4x.4=13.411
4x(64-12)=13.411
4x.52=13.411
4x+1=411
x+1=11
x=10
4x+3 - 3.4x+1 = 13.411
4x+1.(42 - 3) = 13.411
4x+1.13 = 13.411
=> 4x+1 = 411
=> x + 1 = 11
=> x = 10
4x+3 - 3.4x+1 = 13.411
4x+1.(16-3) = 13.411
4x+1.13 = 13.411
4x+1 = 411
<=> x+1 = 11
x = 10
\(4^{x+3}-3\cdot4^{x+1}=13\cdot4^{11}\)
\(\Rightarrow4^{x+1}\cdot\left(4^2-3\right)=13\cdot4^{11}\)
\(\Rightarrow4^{x+1}\cdot13=13\cdot4^{11}\)
\(\Rightarrow4^{x+1}=4^{11}\)
\(\Rightarrow x+1=11\)
\(\Rightarrow x=10\)
Vậy \(x=10\)
\(4^{x+3}-3.4^{x+1}=13.4^{11}\)
\(16.4^{x+1}-3.4^{x+1}=13.4^{11}\)
\(\left(16-3\right).4^{x+1}=13.4^{11}\)
\(13.4^{x+1}=13.4^{11}\)
\(\Rightarrow x+1=11\)
\(x=10\)
\(4^{x+3}-3.4^{x+1}=13.4^{11}\)
=> \(4^{x+1}.\left(4^2-3\right)=13.4^{11}\)
=> \(4^{x+1}.\left(16-3\right)=13.4^{11}\)
=> \(4^{x+1}.13=13.4^{11}\)
=> \(x+1=11\)
=> \(x=11-1=10\)