Tìm x, y, z:
a, 2x/3 = 3y/ 4 = 4z/5 và x+2y+4z = 220
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt 2x/3+3y/4=4z/5=k (k khác 0 )
<=>x= 3/2.k ; y=4/3.k ; z=5/4.k
mà x+2y+4z = 220
suy ra 3/2.k+2.4/3.k+4.5/4k = 220
<=>k = 24
thay k vao tim dc x=36; y=32; z=30
2x/3= 3y/4 => y= 8x/9; 2x/3=4z/5=> z= 10x/12
x+2y+4z= 220=> x+ 2(8x/9) + 4(10x/12) = 220 => x= 36=> y=32; z=30
\(\dfrac{2x}{3}=\dfrac{3y}{4}=\dfrac{4z}{5}\)
\(\Leftrightarrow\dfrac{x}{\dfrac{3}{2}}=\dfrac{y}{\dfrac{4}{3}}=\dfrac{z}{\dfrac{5}{4}}\)
\(\Leftrightarrow\dfrac{x}{\dfrac{3}{2}}=\dfrac{2y}{\dfrac{8}{3}}=\dfrac{4z}{5}\)
Theo t,c dãy tỉ số bằng nhau ta có :
\(\dfrac{x}{\dfrac{3}{2}}=\dfrac{2y}{\dfrac{8}{3}}=\dfrac{4z}{5}=\dfrac{x+2y+4z}{\dfrac{3}{2}+\dfrac{8}{3}+5}=\dfrac{220}{\dfrac{55}{6}}=24\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{\dfrac{3}{2}}=24\\\dfrac{2y}{\dfrac{8}{3}}=24\\\dfrac{4z}{5}=24\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=36\\y=32\\z=30\end{matrix}\right.\)
Vậy ...
Câu trả lời hay nhất: 2x/3 = 3y/4 => y = (4/3)(2x/3) = 8x/9
2x/3 = 4z/5 => z = (5/4)(2x/3) = 10x/12 = 5x/6
=> x + y + z = x + 8x/9 + 5x/6 = 49
hay là
(18 + 16 + 15)x/18 = 49, tu'c là x = 18
=> y = (8/9)18 = 16
và z = (5/6)18 = 15
MIK NHA
\(3x=2y=z\Rightarrow\frac{z}{6}=\frac{x}{2}=\frac{y}{3}\)
Áp dụng tính chất của dãy tỉ số bằng nhau
\(\frac{z}{6}=\frac{x}{2}=\frac{y}{3}=\frac{x+y+z}{6+2+3}=\frac{99}{11}=9\)
\(\Rightarrow\hept{\begin{cases}z=54\\x=18\\y=27\end{cases}}\)
Bài 1:
a) Ta có: \(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}.\)
=> \(\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{3}}=\frac{4z}{5}\)
=> \(\frac{x}{\frac{3}{2}}=\frac{2y}{\frac{8}{3}}=\frac{4z}{5}\) và \(x+2y+4z=220.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{x}{\frac{3}{2}}=\frac{2y}{\frac{8}{3}}=\frac{4z}{5}=\frac{x+2y+4z}{\frac{3}{2}+\frac{8}{3}+5}=\frac{220}{\frac{55}{6}}=24.\)
\(\left\{{}\begin{matrix}\frac{x}{\frac{3}{2}}=24\Rightarrow x=24.\frac{3}{2}=36\\\frac{y}{\frac{4}{3}}=24\Rightarrow y=24.\frac{4}{3}=32\\\frac{4z}{5}=24\Rightarrow4z=120\Rightarrow z=30\end{matrix}\right.\)
Vậy \(\left(x;y;z\right)=\left(36;32;30\right).\)
Chúc bạn học tốt!
\(a,\) \(3x=2y\Rightarrow\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{10}=\frac{y}{15}\left(1\right)\)
\(7x=5z\Rightarrow\frac{x}{5}=\frac{z}{7}\Rightarrow\frac{x}{10}=\frac{z}{14}\left(2\right)\)
Từ (1) và (2) ta có: \(\frac{x}{10}=\frac{y}{15}=\frac{z}{14}\) và \(x-y+z=32\)
Áp dụng t/c DTSBN ta có:
\(\frac{x}{10}=\frac{y}{15}=\frac{z}{14}=\frac{x-y+z}{10-15+14}=\frac{32}{9}\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{10}=\frac{32}{9}\Rightarrow x=\frac{320}{9}\\\frac{y}{15}=\frac{32}{9}\Rightarrow y=\frac{160}{3}\\\frac{z}{14}=\frac{32}{9}\Rightarrow z=\frac{2560}{189}\end{cases}}\)
Vậy \(x=\frac{320}{9};y=\frac{160}{3};z=\frac{2560}{189}\)
các câu còn lại lm tương tự nhé
\(\frac{1}{2}x=\frac{2}{3}y\Rightarrow\frac{x}{\frac{2}{3}}=\frac{y}{\frac{1}{2}}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{\frac{2}{3}}=\frac{y}{\frac{1}{2}}=\frac{x-y}{\frac{2}{3}-\frac{1}{2}}=\frac{15}{\frac{1}{6}}=90\)
Suy ra :
\(\frac{x}{\frac{2}{3}}=90\Leftrightarrow x=90\times\frac{2}{3}=60\)
\(\frac{y}{\frac{1}{2}}=90\Leftrightarrow y=90\times\frac{1}{2}=45\)
Vì \(\frac{2}{3}y=\frac{3}{4}z=\frac{2}{3}45=\frac{3}{4}z\Rightarrow\frac{3}{4}z=30\Leftrightarrow z=40\)
Vậy \(\hept{\begin{cases}x=60\\y=45\\z=40\end{cases}}\)
+) Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x^2}{9}=\frac{y^2}{16}=\frac{x^2+y^2}{9+16}=\frac{100}{25}=4\)
=> \(\hept{\begin{cases}\frac{x^2}{9}=4\\\frac{y^2}{16}=4\end{cases}}\) => \(\hept{\begin{cases}x^2=4.9=36\\y^2=4.16=64\end{cases}}\) => \(\hept{\begin{cases}x=\pm6\\y=\pm8\end{cases}}\)
Vậy ...
Đặt 2x/3+3y/4=4z/5=k (k khác 0 )
<=>x= 3/2.k ; y=4/3.k ; z=5/4.k
mà x+2y+4z = 220
suy ra 3/2.k+2.4/3.k+4.5/4k = 220
<=>k = 24
\(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}=k\)
=>\(\begin{cases}2x=3k\\3y=4k\\4z=5k\end{cases}\)
=>\(\begin{cases}x=\frac{3k}{2}\\y=\frac{4k}{3}\\z=\frac{5k}{4}\end{cases}\)
ta có:
x+2y+4z=220
=> \(\frac{3k}{2}+2\left(\frac{4k}{3}\right)+4\left(\frac{5k}{4}\right)=220\)
=> \(\frac{3k}{2}+\frac{8k}{3}+5k=220\)
=> k(\(\frac{3}{2}+\frac{8}{3}+5\))=220
=> 55/6k=220
=> k=220.6/55=24
vậy
x=24.3/2=36
y=24.4/3=32
z=24.5/4=30