Tìm x , biết :
3 . 52x+1 - 3 . 25x = 300
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
số số hạng của pt: (99-1)/2 +1 = 50
VT >0 => VP>0 => x>0
phương trình tương đương : x+1 + x+3 +...+ x+99 = 52x
50x + \(\dfrac{\left(99+1\right)\cdot50}{2}\) = 52x
2x = 2500
=> x= 1250 (thỏa mãn)
1: =>\(5^{2x-3}=5^2\cdot3+5^2\cdot2=5^2\cdot5=5^3\)
=>2x-3=3
=>2x=6
=>x=3
2: \(41-2^{x+1}=9\)
=>\(2^{x+1}=32\)
=>x+1=5
=>x=4
3: =>\(4^{x+2}=65-1=64\)
=>x+2=3
=>x=1
\(5^{2x-3}-2.5^2=5^2.3\\ 5^{2x-3}=5^2.3+5^2.2\\ 5^{2x-3}=5^2.\left(3+2\right)\\ 5^{2x-3}=5^2.5\\ 5^{2x-3}=5^3\\ \Rightarrow2x-3=3\\ 2x=3+3\\ 2x=6\\ x=\dfrac{6}{2}\\ Vậy:x=3\)
Bài 4:
\(a,2^{30}=\left(2^3\right)^{10}=8^{10};3^{20}=\left(3^2\right)^{10}=9^{10}\\ Vì:8^{10}< 9^{10}\left(Vì:8< 9\right)\Rightarrow2^{30}< 3^{20}\\ b,9^{10}.27^5=\left(3^2\right)^{10}.\left(3^3\right)^5=3^{20}.3^{15}=3^{35}\\ 243^7=\left(3^5\right)^7=3^{35}\\ Vì:3^{35}=3^{35}\Rightarrow243^7=9^{10}.27^5\)
Ta có: \(100< 5^{2x-1}\le5^6\)
\(\Leftrightarrow5^2< 5^{2x-1}\le5^6\)
\(\Leftrightarrow2x-1\in\left\{3;5\right\}\)
\(\Leftrightarrow2x\in\left\{4;6\right\}\)
hay \(x\in\left\{2;3\right\}\)
a, 2.(x – 5)+7 = 77
<=> 2.(x – 5) = 70 <=> x – 5 = 35 <=> x = 40
b, x - 1 3 - 3 5 : 3 4 + 2 . 2 3 = 14
<=> x - 1 3 - 3 + 2 4 = 14
<=> x - 1 3 = 14 + 3 - 16 = 1
<=> x – 1 = 1 <=> x = 2
c, 1 + 2 + 2 2 + 2 3 + . . . + 2 2016 = 2 x - 1 - 1
Đặt: A = 1 + 2 + 2 2 + 2 3 + . . . + 2 2016 => 2A = 2 + 2 2 + 2 3 + . . . + 2 2017
=> 2A – A = ( 2 + 2 2 + 2 3 + . . . + 2 2017 ) – ( 1 + 2 + 2 2 + 2 3 + . . . + 2 2016 )
=> A = 2 2017 - 1
Ta có: 1 + 2 + 2 2 + 2 3 + . . . + 2 2016 = 2 x - 1 - 1 => 2 2017 - 1 = 2 x - 1 - 1 => x = 2018
d, 5 2 x - 3 - 2 . 5 2 = 5 2 . 3
<=> 5 2 x - 3 = 5 2 . 3 + 5 2 . 2
<=> 5 2 x - 3 = 5 2 . ( 3 + 2 )
<=> 5 2 x - 3 = 5 3
<=> 2x – 3 = 3 => x = 3
Ta có: 100 < 52x – 1 < 56
=> 52 < 100 < 52x-1 < 56
=> 2 < 2x – 1 < 6
=> 2 + 1 < 2x < 6 + 1
=> 3 < 2x < 7
Vì x ∈ N nên suy ra: x ∈ {2; 3} là thỏa mãn.
Ta có 100=52.4
\(\Rightarrow5^3\le5^{2x-1}< 5^6\)
\(\Rightarrow3\le2x-1< 6\)
\(\Rightarrow4\le2x< 7\)
\(\Rightarrow2\le x< 3,5\)
Mà \(x\) là số tự nhiên
\(\Rightarrow x=2\) hoặc \(x=3\)
\(3\cdot5^{2x+1}-3\cdot25^x=300\)
\(=>3\cdot5^{2x+1}-3\cdot5^{2x}=300\)
\(=>3\cdot\left(5^{2x+1}-5^{2x}\right)=300\)
\(=>3\cdot\left(5^{2x}\cdot5-5^{2x}\right)=300\)
\(=>5^{2x}\cdot\left(5-1\right)=300:3\)
\(=>5^{2x}\cdot4=100\)
\(=>5^{2x}=100:4=25\)
\(=>5^{2x}=5^2\)
\(=>2x=2\)
\(=>x=2:2=1\)