Chứng minh:
a, \(\left(2a-1\right)^3-\left(2a-1\right)\) chia hết cho 8 với mọi a
b, \(5a^3+15a^2+10a\) chia hết cho 30 với mọi a
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(a^2\left(a+1\right)+2a\left(a+1\right)\)
\(=a\left(a+1\right)\left(a+2\right)\)
Vì \(a,a+1\) là 2 số tự nhiên liên tiếp nên:
\(\Rightarrow a\left(a+1\right)\) chia hết cho \(2\)
\(\Rightarrow a\left(a+1\right)\left(a+2\right)\) chia hết cho \(2\)
Vì \(a,a+1,a+2\) là 3 số tự nhiên liên tiếp nên:
\(\Rightarrow a\left(a+1\right)\left(a+2\right)\) chia hết cho 3
\(\Rightarrow a\left(a+1\right)\left(a+2\right)\) chia hết cho \(2.3\)
\(\Rightarrow a\left(a+1\right)\left(a+2\right)\) chia hết cho \(6\left(đpcm\right)\)
b, \(a\left(2a-3\right)-2a\left(a+1\right)\)
\(=a\left[2a-3-2\left(a+1\right)\right]\)
\(=-5a\) chia hết cho \(5\left(đpcm\right)\)
\(a^2\left(a+1\right)+2a\left(a+1\right)=\left(a^2+2a\right)\left(a+1\right)=a\left(a+1\right)\left(a+2\right)\)
Tích 3 số tự nhiên liên tiếp chia hết cho 3 và có ít nhất 1 số chẵn nên \(a\left(a+1\right)\left(a+2\right)⋮6\)
Vậy \(a^2\left(a+1\right)+2a\left(a+1\right)⋮6\left(đpcm\right)\)
a) a2(a+1)+2a(a+1) =(a+1)(a2+2a)=(a+1)(a+2)a
3 số tự nhiên liên tiếp chia hết cho 6 => đpcm
b) a(2a-3)-2a(a+1) = a[(2a-3)-2(a+1)] =a(2a-3-2a-2)
= -5a ⋮ 5 (đpcm)
c) \(x^2-x+1=x^2-2.\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)Do \(\left(x-\dfrac{1}{4}\right)^2\ge0\forall x\)
=> \(\left(x-\dfrac{1}{4}\right)^2+\dfrac{3}{4}>0\) (đpcm)
d) \(-\left(x^2-4x+5\right)=-\left(x^2-4x+4+1\right)=-\left(x-2\right)^2-1\)Do - (x-2)2 ≤ 0 với mọi x
=> -(x-2)2-1 <0 (đpcm)
\(-x^2+4x-5\)
\(=\left(-x+4x-4\right)-1\)
\(=-\left(x-2\right)^2-1\le-1\)
Vì -1<0
Nên \(-x^2+4x-5< 0\) với mọi x
a ,\(a^2\left(a+1\right)+2a\left(a+1\right)⋮6\)
\(\Leftrightarrow a\left(a+1\right)\left(a+2\right)⋮6\)
Vì a(a+1) là 2 số nguyên liên tiếp nên chia hết cho 2
Vì a (a+1)(a+2) là 3 số nguyên liên tiêp nên chia hết cho 3
Mà 2 và 3 là 2 số nguyên tố cùng nhau
\(\Rightarrow a\left(a+1\right)\left(a+2\right)⋮6\) hay \(a^2\left(a+1\right)+2a\left(a+1\right)⋮6\) (đpcm)
b,\(a\left(2a-3\right)-2a\left(a+1\right)⋮5\)
\(\Leftrightarrow2a^2-3a-2a^2-2a⋮5\)
\(\Leftrightarrow-5a⋮5\) (đúng)
Vậy \(a\left(2a-3\right)-2a\left(a+1\right)⋮5\)
c,\(x^2+2x+2>0\forall x\)
Ta có \(x^2+2x+2=\left(x^2+2x+1\right)+1=\left(x+1\right)^2+1\)
Vì \(\left(x+1\right)^2\ge0\forall x\Rightarrow\left(x+1\right)^2+1\ge1>0\forall x\)
Vậy \(x^2+2x+2>0\forall x\)
d,\(x^2-x+1>0\forall x\)
Ta có: \(x^2-x+1=\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)
Vì \(\left(x-\dfrac{1}{2}\right)^2\ge0\Rightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}>0\forall x\)
Vậy \(x^2-x+1>0\forall x\)
e,\(-x^2+4x-5< 0\forall x\)
Ta có \(-x^2+4x-5=-\left(x^2-4x+4\right)-1=-\left(x-2\right)^2-1\)
Vì \(-\left(x-2\right)^2\le0\forall x\Rightarrow-\left(x-2\right)^2-1\le-1< 0\forall x\)
Vậy \(-x^2+4x-5< 0\forall x\)
toán này có trong thi HSG lớp 9 bạn nhé:
nhóm nhân tử làm xuất hiện cái số chia hết cho số cần chia VD như:2a+4b=2(a+2b) mà 2 nhân với bất cứa 1 số nào cũng chia hết cho 2 nên BT chia hết cho 2
còn phần dưới hì phân tích 2 số đâu chia hết cho 1 số chẵn mà cộng thếm 1 thì chia hết cho số lẻ nên BT sai
giải câu c nha
xét hiệu:A= \(a^3+b^3+c^3-a-b-c=\left(a^3-a\right)+\left(b^3-b\right)+\left(c^3-c\right)\)
Ta có:a3-a=a(a2-1)=a(a-1)(a+1) chia hết cho 6
tương tự :b3-b chia hết cho 6 và c3-c chia hết cho 6
\(\Rightarrow\)A chia hết cho 6
=> a3+b3+c3 -a-b-c chia hết cho 6
mà a3+b3+c3chia hết cho 6 nên a+b+c chia hết cho 6
k cho tớ xog tớ giải hai câu còn lại cho nha
a/ n3 - n = n(n+1)(n-1) đây là ba số nguyên liên tiếp nên chia hết cho 6
thiếu đề a phải thuộc Z thì phải