K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 12 2019

a, \(a^2\left(a+1\right)+2a\left(a+1\right)\)

\(=a\left(a+1\right)\left(a+2\right)\)

\(a,a+1\) là 2 số tự nhiên liên tiếp nên:

\(\Rightarrow a\left(a+1\right)\) chia hết cho \(2\)

\(\Rightarrow a\left(a+1\right)\left(a+2\right)\) chia hết cho \(2\)

\(a,a+1,a+2\) là 3 số tự nhiên liên tiếp nên:

\(\Rightarrow a\left(a+1\right)\left(a+2\right)\) chia hết cho 3

\(\Rightarrow a\left(a+1\right)\left(a+2\right)\) chia hết cho \(2.3\)

\(\Rightarrow a\left(a+1\right)\left(a+2\right)\) chia hết cho \(6\left(đpcm\right)\)

b, \(a\left(2a-3\right)-2a\left(a+1\right)\)

\(=a\left[2a-3-2\left(a+1\right)\right]\)

\(=-5a\) chia hết cho \(5\left(đpcm\right)\)

8 tháng 12 2018

a) a2(a+1)+2a(a+1) =(a+1)(a2+2a)=(a+1)(a+2)a

3 số tự nhiên liên tiếp chia hết cho 6 => đpcm

b) a(2a-3)-2a(a+1) = a[(2a-3)-2(a+1)] =a(2a-3-2a-2)

= -5a ⋮ 5 (đpcm)

c) \(x^2-x+1=x^2-2.\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)Do \(\left(x-\dfrac{1}{4}\right)^2\ge0\forall x\)

=> \(\left(x-\dfrac{1}{4}\right)^2+\dfrac{3}{4}>0\) (đpcm)

d) \(-\left(x^2-4x+5\right)=-\left(x^2-4x+4+1\right)=-\left(x-2\right)^2-1\)Do - (x-2)2 ≤ 0 với mọi x

=> -(x-2)2-1 <0 (đpcm)

26 tháng 4 2016

giả sử 2a+b chia hết cho 3 thì 2 số kia chia 3 dư 1 vì nó là scp 

nên 2b+c-2c-a = 2b-a-c chia hết cho 3

lại trừ đi 2a+b thì được b-c-3a chia hết cho 3 suy ra b-c chia hết cho 3

tương tự ta có c-a và a-b chia hết cho 3

cậu phân tích p ra sẽ triệt tiêu hết a^3, b^3 , c^3 và còn lại -3ab(a-b)-3bc(b-c)-3ca(c-a) = -3(a-b)(b-c)(c-a) chia hết cho 81

5 tháng 11 2017

khó quá

27 tháng 3 2018

dễ mà cô nương

\(a^3-b^3=\left(a-b\right)\left(a^2+ab+b^2\right)\)

\(\left(a^2+ab+b^2\right)=\left\{\left(a+b\right)^2-ab\right\}\)

\(a^3-b^3=\left(a-b\right)\left(25-6\right)=19\left(a-b\right)\)

ta có 

\(a=-5-b\)

suy ra

\(a^3-b^3=19\left(-5-2b\right)\) " xong "

2, trên mạng đầy

3, dytt mọe mày ngu ab=6 thì cmm nó phải chia hết cho 6 chứ :)

4 . \(x^2-\frac{2.1}{2}x+\frac{1}{4}+\frac{1}{3}-\frac{1}{4}>0\) tự làm dcmm

5. trên mạng đầy

6 , trên mang jđầy 

18 tháng 5 2018

\(-x^2+4x-5\)

\(=\left(-x+4x-4\right)-1\)

\(=-\left(x-2\right)^2-1\le-1\)

Vì -1<0

Nên \(-x^2+4x-5< 0\) với mọi x

18 tháng 5 2018

a ,\(a^2\left(a+1\right)+2a\left(a+1\right)⋮6\)

\(\Leftrightarrow a\left(a+1\right)\left(a+2\right)⋮6\)

Vì a(a+1) là 2 số nguyên liên tiếp nên chia hết cho 2

Vì a (a+1)(a+2) là 3 số nguyên liên tiêp nên chia hết cho 3

Mà 2 và 3 là 2 số nguyên tố cùng nhau

\(\Rightarrow a\left(a+1\right)\left(a+2\right)⋮6\) hay \(a^2\left(a+1\right)+2a\left(a+1\right)⋮6\) (đpcm)

b,\(a\left(2a-3\right)-2a\left(a+1\right)⋮5\)

\(\Leftrightarrow2a^2-3a-2a^2-2a⋮5\)

\(\Leftrightarrow-5a⋮5\) (đúng)

Vậy \(a\left(2a-3\right)-2a\left(a+1\right)⋮5\)

c,\(x^2+2x+2>0\forall x\)

Ta có \(x^2+2x+2=\left(x^2+2x+1\right)+1=\left(x+1\right)^2+1\)

\(\left(x+1\right)^2\ge0\forall x\Rightarrow\left(x+1\right)^2+1\ge1>0\forall x\)

Vậy \(x^2+2x+2>0\forall x\)

d,\(x^2-x+1>0\forall x\)

Ta có: \(x^2-x+1=\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)

\(\left(x-\dfrac{1}{2}\right)^2\ge0\Rightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}>0\forall x\)

Vậy \(x^2-x+1>0\forall x\)

e,\(-x^2+4x-5< 0\forall x\)

Ta có \(-x^2+4x-5=-\left(x^2-4x+4\right)-1=-\left(x-2\right)^2-1\)

\(-\left(x-2\right)^2\le0\forall x\Rightarrow-\left(x-2\right)^2-1\le-1< 0\forall x\)

Vậy \(-x^2+4x-5< 0\forall x\)

19 tháng 7 2016

thiếu đề a phải thuộc Z thì phải

28 tháng 9 2019

\(a^2\left(a+1\right)+2a\left(a+1\right)=\left(a^2+2a\right)\left(a+1\right)=a\left(a+1\right)\left(a+2\right)\)

Tích 3 số tự nhiên liên tiếp chia hết cho 3 và có ít nhất 1 số chẵn nên \(a\left(a+1\right)\left(a+2\right)⋮6\)

Vậy \(a^2\left(a+1\right)+2a\left(a+1\right)⋮6\left(đpcm\right)\)

Giúp mình với! Mình đang cần gấp. Các bạn làm được bài nào thì giúp đỡ mình nhé! Cảm ơn!Bài 1: Cho các số thực dương a,b,c. Chứng minh rằng:\(\frac{a^2}{\sqrt{\left(2a^2+b^2\right)\left(2a^2+c^2\right)}}+\frac{b^2}{\sqrt{\left(2b^2+c^2\right)\left(2b^2+a^2\right)}}+\frac{c^2}{\sqrt{\left(2c^2+a^2\right)\left(2c^2+b^2\right)}}\le1\).Bài 2: Cho các số thực dương a,b,c,d. Chứng minh...
Đọc tiếp

Giúp mình với! Mình đang cần gấp. Các bạn làm được bài nào thì giúp đỡ mình nhé! Cảm ơn!

Bài 1: Cho các số thực dương a,b,c. Chứng minh rằng:

\(\frac{a^2}{\sqrt{\left(2a^2+b^2\right)\left(2a^2+c^2\right)}}+\frac{b^2}{\sqrt{\left(2b^2+c^2\right)\left(2b^2+a^2\right)}}+\frac{c^2}{\sqrt{\left(2c^2+a^2\right)\left(2c^2+b^2\right)}}\le1\).

Bài 2: Cho các số thực dương a,b,c,d. Chứng minh rằng:

\(\frac{a-b}{a+2b+c}+\frac{b-c}{b+2c+d}+\frac{c-d}{c+2d+a}+\frac{d-a}{d+2a+b}\ge0\).

Bài 3: Cho các số thực dương a,b,c. Chứng minh rằng:

\(\frac{\sqrt{b+c}}{a}+\frac{\sqrt{c+a}}{b}+\frac{\sqrt{a+b}}{c}\ge\frac{4\left(a+b+c\right)}{\sqrt{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}\).

Bài 4:Cho a,b,c>0, a+b+c=3. Chứng minh rằng: 

a)\(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\ge1\).

b)\(\frac{a^3}{a^2+b^2}+\frac{b^3}{b^2+c^2}+\frac{c^3}{c^2+a^2}\ge\frac{3}{2}\).

c)\(\frac{a+1}{b^2+1}+\frac{b+1}{c^2+1}+\frac{c+1}{a^2+1}\ge3\).

Bài 5: Cho a,b,c >0. Chứng minh rằng:

\(\frac{2a^2+ab}{\left(b+c+\sqrt{ca}\right)^2}+\frac{2b^2+bc}{\left(c+a+\sqrt{ab}\right)^2}+\frac{2c^2+ca}{\left(a+b+\sqrt{bc}\right)^2}\ge1\).

8
21 tháng 10 2019

1) Áp dụng bunhiacopxki ta được \(\sqrt{\left(2a^2+b^2\right)\left(2a^2+c^2\right)}\ge\sqrt{\left(2a^2+bc\right)^2}=2a^2+bc\), tương tự với các mẫu ta được vế trái \(\le\frac{a^2}{2a^2+bc}+\frac{b^2}{2b^2+ac}+\frac{c^2}{2c^2+ab}\le1< =>\)\(1-\frac{bc}{2a^2+bc}+1-\frac{ac}{2b^2+ac}+1-\frac{ab}{2c^2+ab}\le2< =>\)

\(\frac{bc}{2a^2+bc}+\frac{ac}{2b^2+ac}+\frac{ab}{2c^2+ab}\ge1\)<=> \(\frac{b^2c^2}{2a^2bc+b^2c^2}+\frac{a^2c^2}{2b^2ac+a^2c^2}+\frac{a^2b^2}{2c^2ab+a^2b^2}\ge1\)  (1) 

áp dụng (x2 +y2 +z2)(m2+n2+p2\(\ge\left(xm+yn+zp\right)^2\)

(2a2bc +b2c2 + 2b2ac+a2c2 + 2c2ab+a2b2). VT\(\ge\left(bc+ca+ab\right)^2\)   <=> (ab+bc+ca)2. VT \(\ge\left(ab+bc+ca\right)^2< =>VT\ge1\)  ( vậy (1) đúng)

dấu '=' khi a=b=c

21 tháng 10 2019

4b, \(\frac{a^3}{a^2+b^2}+\frac{b^3}{b^2+c^2}+\frac{c^3}{c^2+a^2}=1-\frac{ab^2}{a^2+b^2}+1-\frac{bc^2}{b^2+c^2}+1-\frac{ca^2}{a^2+c^2}\)

\(\ge3-\frac{ab^2}{2ab}-\frac{bc^2}{2bc}-\frac{ca^2}{2ac}=3-\frac{\left(a+b+c\right)}{2}=\frac{3}{2}\)