cho a/b=c/d chứng minh rang a) a/b = a+c/b+d
b) a+b/c+d = a-b/c-d
c) a^2/b^2 = ac/bd
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) \(ad=bc\)
\(\Rightarrow ac-ad+bc-bd=ac-bc+ad-bd\)
\(\Rightarrow a.\left(c-d\right)+b.\left(c-d\right)=c.\left(a-b\right)+d.\left(a-b\right)\)
\(\Rightarrow\left(a+b\right)\left(c-d\right)=\left(c+d\right)\left(a-b\right)\)
\(\Rightarrow\frac{a+b}{c+d}=\frac{a-b}{c-d}\)
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\hept{\begin{cases}a=kb\\c=kd\end{cases}}\)
a) \(VT=\frac{a}{a+c}=\frac{kb}{kb+kd}=\frac{kb}{k\left(b+d\right)}=\frac{b}{b+d}=VP\)
=> đpcm
b) \(VT=\frac{a^2+c^2}{b^2+d^2}=\frac{\left(kb\right)^2+\left(kd\right)^2}{b^2+d^2}=\frac{k^2b^2+k^2d^2}{b^2+d^2}=\frac{k^2\left(b^2+d^2\right)}{b^2+d^2}=k^2\)(1)
\(VP=\frac{ac}{bd}=\frac{kb\cdot kd}{bd}=\frac{k^2bd}{bd}=k^2\)(2)
Từ (1) và (2) => VT = VP => đpcm
A B C D E 1 2
a) Vì BC=2 AB
Mà E là trung điểm của BC
=> AB= BE = EC
Xét ΔABD và ΔEBD có:
AB=BE (cmt)
góc A1 = góc A2(gt)
BD: cạnh chung
=> ΔABD=ΔEBD (c.g.c)
=> góc ADB= góc EDB
=> DB là tia pg của góc ADE
b) VÌ ΔABD=ΔEBD( cmt)
=> góc BAD= góc BED=90
Mà : góc DEB + góc DEC=180
=> góc DEB= góc DEC
Xét ΔDEB và ΔDEC có:
DE:cạnh chung
góc DEB = góc DEC(cmt)
BE=CE(gt)
=> ΔDEB=ΔDEC(c.g.c)
=> BD=DC
c) Vì ΔDEB=ΔDEC(cmt)
=> góc B2= góc C
Mà: góc B+ góc C=90
<=> 2 B2+ góc C=90
<=> 3 góc B2=90
<=> B2=30
Vậy: góc C=góc B2=30; góc B= 2.B2=2.30=60
a) Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\)
Vậy ta có đpcm
b)Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{a}{b}=\frac{c}{d}=\frac{a-c}{b-d}\)
Vậy ta có đpcm
c) Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\begin{cases}a=bk\\c=dk\end{cases}\)
=>\(\frac{a^2}{b^2}=\frac{\left(bk\right)^2}{b^2}=\frac{b^2k^2}{b^2}=k^2\) (1)
Mặt khác:\(\frac{ac}{bd}=\frac{bk.dk}{bd}=k^2\) (2)
Từ (1) và (2) => \(\frac{a^2}{b^2}=\frac{ac}{bd}\left(đpcm\right)\)
ai nhanh duoc 10 like