Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\)
Vậy ta có đpcm
b)Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{a}{b}=\frac{c}{d}=\frac{a-c}{b-d}\)
Vậy ta có đpcm
c) Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\begin{cases}a=bk\\c=dk\end{cases}\)
=>\(\frac{a^2}{b^2}=\frac{\left(bk\right)^2}{b^2}=\frac{b^2k^2}{b^2}=k^2\) (1)
Mặt khác:\(\frac{ac}{bd}=\frac{bk.dk}{bd}=k^2\) (2)
Từ (1) và (2) => \(\frac{a^2}{b^2}=\frac{ac}{bd}\left(đpcm\right)\)
b) \(ad=bc\)
\(\Rightarrow ac-ad+bc-bd=ac-bc+ad-bd\)
\(\Rightarrow a.\left(c-d\right)+b.\left(c-d\right)=c.\left(a-b\right)+d.\left(a-b\right)\)
\(\Rightarrow\left(a+b\right)\left(c-d\right)=\left(c+d\right)\left(a-b\right)\)
\(\Rightarrow\frac{a+b}{c+d}=\frac{a-b}{c-d}\)
bạn vào link này để xem lời giải nha http://olm.vn/hoi-dap/question/255658.html
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{b}.\frac{a}{b}=\frac{c}{d}.\frac{a}{b}\Rightarrow\frac{ac}{bd}=\frac{a^2}{b^2}\)
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{b}.\frac{c}{d}=\frac{c}{d}.\frac{c}{d}\Rightarrow\frac{ac}{bd}=\frac{c^2}{d^2}\)
\(\Rightarrow\frac{ac}{bd}=\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{a^2+c^2}{b^2+d^2}\left(dpcm\right)\)
Đề phải thêm là \(\frac{a}{b}=\frac{c}{d}\) nhé.
a)
b)
\(\Rightarrow\frac{a}{b}=\frac{c}{d}=\frac{2c}{2d}.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
(1)
\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\) (2)
Từ (1) và (2) \(\Rightarrow\frac{a+2c}{b+2d}=\frac{a+c}{b+d}\)
Chúc bạn học tốt!
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\hept{\begin{cases}a=kb\\c=kd\end{cases}}\)
a) \(VT=\frac{a}{a+c}=\frac{kb}{kb+kd}=\frac{kb}{k\left(b+d\right)}=\frac{b}{b+d}=VP\)
=> đpcm
b) \(VT=\frac{a^2+c^2}{b^2+d^2}=\frac{\left(kb\right)^2+\left(kd\right)^2}{b^2+d^2}=\frac{k^2b^2+k^2d^2}{b^2+d^2}=\frac{k^2\left(b^2+d^2\right)}{b^2+d^2}=k^2\)(1)
\(VP=\frac{ac}{bd}=\frac{kb\cdot kd}{bd}=\frac{k^2bd}{bd}=k^2\)(2)
Từ (1) và (2) => VT = VP => đpcm