Chứng Minh Với n \(\in\) N; n \(\ge\) Z, ta có:
\(\frac{3}{9.14}+\frac{3}{14.19}+\frac{3}{19.24}+...+\frac{3}{\left(5n-1\right)\left(5n-4\right)}<\frac{1}{15}\)
Các bạn giải hộ mình nha, mình đang cần gấp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nếu \(n=0\) thì \(5^0-1=1-1=0⋮4\)
Nếu \(n=1\) thì \(5^1-1=5-1=4⋮4\)
Nếu \(n\ge2\) thì 2 số tận cùng khi lũy thừa với cơ số 5 luôn là 25.
\(\Rightarrow5^n-1=\left(...25\right)-1=\left(...24\right)⋮4\)(đpcm)
2 Số tận cùng chia hết cho 4 thì số đó chia hết cho 4.
mình chỉ ns cách lm thôi nha:
đầu tiên mình chứng minh ráng tổng 2 số tự nhiên: 10,15 không chia hết cho 2
và n nhân n= n bình và bình phương của 1 số luôn chia hết cho 2 nên ...................
sau đó xét n lẻ thì lẻ cộng lẻ ra chẵn nên ......................chia hết cho 2
Ta có: \(\sqrt{n+1}-\sqrt{n}=\dfrac{\left(\sqrt{n+1}-\sqrt{n}\right)\left(\sqrt{n+1}+\sqrt{n}\right)}{\sqrt{n+1}+\sqrt{n}}\)
\(=\dfrac{n+1-n}{\sqrt{n+1}+\sqrt{n}}=\dfrac{1}{\sqrt{n+1}+\sqrt{n}}< \dfrac{1}{\sqrt{n}+\sqrt{n}}=\dfrac{1}{2\sqrt{n}}\)
\(\Rightarrow2\left(\sqrt{n+1}-\sqrt{n}\right)< \dfrac{1}{\sqrt{n}}\left(1\right)\)
Ta lại có: \(\sqrt{n}-\sqrt{n-1}=\dfrac{\left(\sqrt{n}-\sqrt{n-1}\right)\left(\sqrt{n}+\sqrt{n-1}\right)}{\sqrt{n}+\sqrt{n-1}}\)
\(=\dfrac{n-n+1}{\sqrt{n}+\sqrt{n-1}}=\dfrac{1}{\sqrt{n}+\sqrt{n-1}}>\dfrac{1}{\sqrt{n}+\sqrt{n}}=\dfrac{1}{2\sqrt{n}}\)
\(\Rightarrow2\left(\sqrt{n}-\sqrt{n-1}\right)>\dfrac{1}{\sqrt{n}}\left(2\right)\)
\(\left(1\right),\left(2\right)\Rightarrow2\left(\sqrt{n+1}-\sqrt{n}\right)< \dfrac{1}{\sqrt{n}}< 2\left(\sqrt{n}-\sqrt{n-1}\right)\)
\(\dfrac{1}{\sqrt{n}}=\dfrac{2}{\sqrt{n}+\sqrt{n}}>\dfrac{2}{\sqrt{n}+\sqrt{n+1}}=\dfrac{2\left(\sqrt{n+1}-\sqrt{n}\right)}{\left(\sqrt{n+1}-\sqrt{n}\right)\left(\sqrt{n+1}+\sqrt{n}\right)}=2\left(\sqrt{n+1}-\sqrt{n}\right)\left(1\right)\)
\(\dfrac{1}{\sqrt{n}}=\dfrac{2}{\sqrt{n}+\sqrt{n}}< \dfrac{2}{\sqrt{n}+\sqrt{n-1}}=\dfrac{2\left(\sqrt{n}-\sqrt{n-1}\right)}{\left(\sqrt{n}+\sqrt{n-1}\right)\left(\sqrt{n}-\sqrt{n-1}\right)}=2\left(\sqrt{n}-\sqrt{n-1}\right)\left(2\right)\)
\(\left(1\right)\left(2\right)\RightarrowĐpcm\)
tích 3 số trên là 3 số tự nhiên liên tiếp
=> có ít hất 1 số chia hết cho 2 và 1 số chia hết 3
=> 2.3=6
=> tích trên chia hết cho 6
Với \(n=1\) thì:
\(4^n+15n-10=4+15-10=9⋮9\)
Giả sử mệnh đề đúng với \(n=k\),nghĩa là \(4^k+15k-10⋮9\),ta sẽ chứng minh mệnh đề cũng đúng với \(n=k+1\)
Thật vậy: Với \(n=k+1\) thì
\(4^n+15n-10=4^{k+1}+15\left(k+1\right)-10\)
\(=4^{k+1}+15k+15-10=4^{k+1}+15k+5\)
\(=4.\left(4^k+15k-10\right)-45k+45\)
\(=4\left(4^{4k}+15k-10\right)-9\left(5k+5\right)⋮9\)
Vậy mệnh đề đúng với mọi \(n\in N\)
giả sữ 10^n chia hết cho45 dư 10 su ra 10^n-10 chia hết cho 45
Vậy 10^n-n cũng sẽ chia hết cho 9 và 5
ta có: 10^n-10=100000000000.....n ( n số 0)-10=999999999999...........(n-1 số 9)0
xét thấy n-1 số 9 chia hết cho 9 và 10 chia hết cho 5 suy ra 10^n-10 chia hết cho 45
nên 10^n chia hết cho 45 dư 10
tick cho mk nnnnnnnnnnnnhhhhhhhhhhhhhhhhhhhhhaaaaaaaaaaaaaaaa!!!!!!!!!!!!!!!!!!!!!!!1
cho x;y;z>0 tm \(x^2+y^2+z^2=3xyz.CMR\frac{x^2}{x^4+yz}+\frac{y^2}{Y^4+xz}+\frac{z^2}{z^4+xy}\le\frac{3}{2}\)
\(\frac{3}{9}\)- \(\frac{3}{14}\)+ \(\frac{3}{14}-\frac{3}{19}+\frac{3}{19}-\frac{3}{24}+...+\frac{3}{5n-1}-\frac{3}{5n-4}=\frac{3}{9}-\frac{3}{5n-4}=\frac{3\left(5n-4\right)}{9\left(5n-4\right)}-\frac{27}{9\left(5n-4\right)}=\frac{15n-12-27}{45n-36}=\frac{15n-39}{45n-36}\)
\(\frac{15n-39}{45n-36};\frac{1}{5}\)
so sanh
\(\frac{\left(15n-39\right)5}{\left(45n-36\right)5}=\frac{75n-195}{225n-180}\)
\(\frac{1}{5}=\frac{45n-36}{5\left(45n-36\right)}=\frac{45n-36}{225n-180}\)
vì 75n-195 < 45n-36 suy ra dãy số trên bé hơn 1/5