Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt :
\(A=\dfrac{3}{9.14}+\dfrac{3}{14.19}+........+\dfrac{3}{\left(5n-1\right)\left(5n+4\right)}\)
\(\Leftrightarrow\dfrac{5}{3}A=\dfrac{5}{9.14}+\dfrac{5}{14.19}+........+\dfrac{5}{\left(5n-1\right)\left(5n+4\right)}\)
\(\Leftrightarrow\dfrac{5}{3}A=\dfrac{1}{9}-\dfrac{1}{14}+\dfrac{1}{14}-\dfrac{1}{19}+...........+\dfrac{1}{5n-1}-\dfrac{1}{5n+4}\)
\(\Leftrightarrow\dfrac{5}{3}A=\dfrac{1}{9}-\dfrac{1}{5n+4}\)
\(\Leftrightarrow A=\left(\dfrac{1}{9}-\dfrac{1}{5n+4}\right):\dfrac{5}{3}\)
\(\Leftrightarrow A=\left(\dfrac{1}{9}-\dfrac{1}{5n+4}\right).\dfrac{3}{5}\)
\(\Leftrightarrow A=\dfrac{1}{9}.\dfrac{3}{5}-\dfrac{1}{5n+4}.\dfrac{3}{5}\)
\(\Leftrightarrow A=\dfrac{1}{15}-\dfrac{1}{5n+4}.\dfrac{3}{5}< \dfrac{1}{15}\)
\(\Leftrightarrow A< \dfrac{1}{15}\left(đpcm\right)\)
1 \(=\)\(\frac{46656}{216}\)\(=\)216
2\(=\)\(\frac{64}{1024}\)\(=\)\(\frac{1}{16}\)
3 \(=\)\(\frac{900}{-27000}\)\(=\)\(\frac{-1}{30}\)
4 \(=\)\(\frac{225}{-3375}\)\(=\)\(\frac{-1}{15}\)
Bài đầu đơn giản rồi , tự tính nhé <3
Bài 2
\(3^{n+2}-2^{n+2}+3^n-2^n\)
\(=3^n.3^2-2^n.2^2+3^n-2^n\)
\(=\left(3^n.3^2+1\right)-\left(2^n.2^2+1\right)\)
\(=3^n.10-2^n.5\)
\(=3^n.10-2^{n-1}.10\)
\(=10.\left(3^n-2^{n-1}\right)⋮10\)
Vậy.....
Bài làm :
Ta có :
\(\frac{1}{2!}+\frac{2}{3!}+\frac{3}{4!}+...+\frac{n}{\left(n+1\right)!}\)
\(=\frac{1}{1.2}+\frac{2}{1.2.3}+\frac{3}{1.2.3.4}+...+\frac{n}{1.2.3...\left(n+1\right)}\)
\(=\frac{2-1}{1.2}+\frac{3-1}{1.2.3}+\frac{4-1}{1.2.3.4}+...+\frac{n+1-1}{1.2.3...\left(n+1\right)}\)
\(=1-\frac{1}{1.2}+\frac{1}{1.2}-\frac{1}{1.2.3}+\frac{1}{1.2.3}-\frac{1}{1.2.3.4}+...+\frac{1}{1.2.3.4..n}-\frac{1}{1.2.3.4...\left(n+1\right)}\)
\(=1-\frac{1}{1.2.3.4...\left(n+1\right)}\)
\(\text{Vì : }\frac{1}{1.2.3.4...\left(n+1\right)}>0\Rightarrow1-\frac{1}{1.2.3.4...\left(n+1\right)}< 1\)
=> Điều phải chứng minh
Ta có : \(\frac{1}{2!}+\frac{2}{3!}+\frac{3}{4!}+...+\frac{n}{\left(n+1\right)!}=\frac{1}{1.2}+\frac{2}{1.2.3}+\frac{3}{1.2.3.4}+...+\frac{n}{1.2.3...\left(n+1\right)}\)
\(=\frac{2-1}{1.2}+\frac{3-1}{1.2.3}+\frac{4-1}{1.2.3.4}+...+\frac{n+1-1}{1.2.3....\left(n+1\right)}\)
\(=1-\frac{1}{1.2}+\frac{1}{1.2}-\frac{1}{1.2.3}+\frac{1}{1.2.3}-\frac{1}{1.2.3.4}+...+\frac{1}{1.2.3.4..n}-\frac{1}{1.2.3.4...\left(n+1\right)}\)
\(=1-\frac{1}{1.2.3.4...\left(n+1\right)}< 1\left(\text{đpcm}\right)\)
\(\frac{3}{9}\)- \(\frac{3}{14}\)+ \(\frac{3}{14}-\frac{3}{19}+\frac{3}{19}-\frac{3}{24}+...+\frac{3}{5n-1}-\frac{3}{5n-4}=\frac{3}{9}-\frac{3}{5n-4}=\frac{3\left(5n-4\right)}{9\left(5n-4\right)}-\frac{27}{9\left(5n-4\right)}=\frac{15n-12-27}{45n-36}=\frac{15n-39}{45n-36}\)
\(\frac{15n-39}{45n-36};\frac{1}{5}\)
so sanh
\(\frac{\left(15n-39\right)5}{\left(45n-36\right)5}=\frac{75n-195}{225n-180}\)
\(\frac{1}{5}=\frac{45n-36}{5\left(45n-36\right)}=\frac{45n-36}{225n-180}\)
vì 75n-195 < 45n-36 suy ra dãy số trên bé hơn 1/5