\(\dfrac{3}{9.14}+\dfrac{3}{14.19}+\dfrac{3}{19.24}+....+\dfrac{3}{\left(...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 10 2017

Đặt :

\(A=\dfrac{3}{9.14}+\dfrac{3}{14.19}+........+\dfrac{3}{\left(5n-1\right)\left(5n+4\right)}\)

\(\Leftrightarrow\dfrac{5}{3}A=\dfrac{5}{9.14}+\dfrac{5}{14.19}+........+\dfrac{5}{\left(5n-1\right)\left(5n+4\right)}\)

\(\Leftrightarrow\dfrac{5}{3}A=\dfrac{1}{9}-\dfrac{1}{14}+\dfrac{1}{14}-\dfrac{1}{19}+...........+\dfrac{1}{5n-1}-\dfrac{1}{5n+4}\)

\(\Leftrightarrow\dfrac{5}{3}A=\dfrac{1}{9}-\dfrac{1}{5n+4}\)

\(\Leftrightarrow A=\left(\dfrac{1}{9}-\dfrac{1}{5n+4}\right):\dfrac{5}{3}\)

\(\Leftrightarrow A=\left(\dfrac{1}{9}-\dfrac{1}{5n+4}\right).\dfrac{3}{5}\)

\(\Leftrightarrow A=\dfrac{1}{9}.\dfrac{3}{5}-\dfrac{1}{5n+4}.\dfrac{3}{5}\)

\(\Leftrightarrow A=\dfrac{1}{15}-\dfrac{1}{5n+4}.\dfrac{3}{5}< \dfrac{1}{15}\)

\(\Leftrightarrow A< \dfrac{1}{15}\left(đpcm\right)\)

28 tháng 3 2017

=\(\dfrac{1}{5}\).(\(\dfrac{5}{4.9}+\dfrac{5}{9.14}+\dfrac{5}{14.19}+....+\dfrac{5}{44.49}\)).\(\dfrac{1-\left(3+5+7+...+49\right)}{89}\)

=\(\dfrac{1}{5}.\left(\dfrac{1}{4}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{14}+...+\dfrac{1}{44}-\dfrac{1}{49}\right)\).\(\dfrac{1-624}{89}\)

=\(\dfrac{1}{5}.\left(\dfrac{1}{4}-\dfrac{1}{49}\right)\).(-7)

=\(\dfrac{1}{5}\).\(\dfrac{45}{196}\).(-7)=\(\dfrac{-9}{28}\)

29 tháng 3 2017

fty

8 tháng 9 2015

\(\frac{3}{9}\)\(\frac{3}{14}\)\(\frac{3}{14}-\frac{3}{19}+\frac{3}{19}-\frac{3}{24}+...+\frac{3}{5n-1}-\frac{3}{5n-4}=\frac{3}{9}-\frac{3}{5n-4}=\frac{3\left(5n-4\right)}{9\left(5n-4\right)}-\frac{27}{9\left(5n-4\right)}=\frac{15n-12-27}{45n-36}=\frac{15n-39}{45n-36}\)

\(\frac{15n-39}{45n-36};\frac{1}{5}\)

so sanh

\(\frac{\left(15n-39\right)5}{\left(45n-36\right)5}=\frac{75n-195}{225n-180}\)

\(\frac{1}{5}=\frac{45n-36}{5\left(45n-36\right)}=\frac{45n-36}{225n-180}\)

vì 75n-195 < 45n-36 suy ra dãy số trên bé hơn 1/5

29 tháng 6 2018

câu B là \(2^{12}\) nha mấy bn

25 tháng 8 2017

Bài 2 :

\(S=\dfrac{1}{4}+\dfrac{2}{4^2}+\dfrac{3}{4^3}+............+\dfrac{2017}{4^{2017}}\)

\(\Leftrightarrow4S=1+\dfrac{2}{4}+\dfrac{3}{4^2}+...........+\dfrac{2017}{4^{2016}}\)

\(\Leftrightarrow4S-S=\left(1+\dfrac{2}{4}+\dfrac{3}{4^2}+..........+\dfrac{2017}{4^{2016}}\right)-\left(\dfrac{1}{4}+\dfrac{2}{4^2}+..........+\dfrac{2017}{4^{2017}}\right)\)

\(\Leftrightarrow3S=1+\dfrac{1}{4}+\dfrac{1}{4^2}+.........+\dfrac{1}{4^{2016}}-\dfrac{2017}{4^{2016}}\)

Đặt :

\(A=1+\dfrac{1}{4}+\dfrac{1}{4^2}+..........+\dfrac{1}{4^{2016}}\)

\(\Leftrightarrow4A=4+1+\dfrac{1}{4}+\dfrac{1}{4^2}+..........+\dfrac{1}{4^{2015}}\)

\(\Leftrightarrow4A-A=\left(4+1+\dfrac{1}{4}+.......+\dfrac{1}{4^{2015}}\right)-\left(1+\dfrac{1}{4}+.......+\dfrac{1}{4^{2016}}\right)\)

\(\Leftrightarrow3A=4-\dfrac{1}{4^{2016}}\)

\(\Leftrightarrow D=\dfrac{4}{3}-\dfrac{1}{2^{2016}.3}\)

\(\Leftrightarrow3S=\dfrac{4}{3}-\dfrac{1}{2^{2016}.3}-\dfrac{2017}{4^{2016}}\)

\(\Leftrightarrow3S< \dfrac{4}{3}\)

\(\Leftrightarrow S< \dfrac{4}{9}\)

\(\Leftrightarrow S< \dfrac{1}{2}\rightarrowđpcm\)

26 tháng 8 2017

\(A=\dfrac{1}{4}+\dfrac{2}{4^2}+\dfrac{3}{4^3}+...+\dfrac{2017}{4^{2017}}\) ( A cho đẹp :v)

\(4A=4\left(\dfrac{1}{4}+\dfrac{2}{4^2}+\dfrac{3}{4^3}+...+\dfrac{2017}{4^{2017}}\right)\)

\(4A=1+\dfrac{2}{4}+\dfrac{3}{4^2}+...+\dfrac{2017}{4^{2016}}\)

\(4A-A=\left(1+\dfrac{2}{4}+\dfrac{3}{4^2}+...+\dfrac{2017}{4^{2016}}\right)-\left(\dfrac{1}{4}+\dfrac{2}{4^2}+\dfrac{3}{4^3}+...+\dfrac{2017}{4^{2017}}\right)\)\(3A=1+\dfrac{1}{4}+\dfrac{1}{4^2}+\dfrac{1}{4^3}+...+\dfrac{1}{4^{2016}}-\dfrac{2017}{4^{2017}}\)

Đặt:

\(M=1+\dfrac{1}{4}+\dfrac{1}{4^2}+\dfrac{1}{4^3}+...+\dfrac{1}{4^{2016}}\)

\(4M=4\left(1+\dfrac{1}{4}+\dfrac{1}{4^2}+\dfrac{1}{4^3}+...+\dfrac{1}{4^{2016}}\right)\)

\(4M=4+1+\dfrac{1}{4}+\dfrac{1}{4^2}+...+\dfrac{1}{4^{2015}}\)

\(4M-M=\left(4+1+\dfrac{1}{4}+\dfrac{1}{4^2}+...+\dfrac{1}{4^{2015}}\right)-\left(1+\dfrac{1}{4}+\dfrac{1}{4^2}+\dfrac{1}{4^3}+...+\dfrac{1}{4^{2016}}\right)\)\(3M=4-\dfrac{1}{4^{2016}}\)

\(M=\dfrac{4}{3}-\dfrac{1}{4^{2016}}\)

Thay M vào A ta có:

\(A=\dfrac{4}{9}-\dfrac{1}{4^{2016}.3}-\dfrac{2017}{4^{2017}}\)

\(\Rightarrow A< \dfrac{1}{2}\Rightarrowđpcm\)

a: \(=\left(1+\dfrac{4}{23}-\dfrac{4}{23}\right)+\left(\dfrac{5}{21}+\dfrac{16}{21}\right)+\dfrac{1}{2}\)

\(=1+1+\dfrac{1}{2}=2+\dfrac{1}{2}=\dfrac{5}{2}\)

b: \(=\left(\dfrac{1}{25}+\dfrac{5}{25}+\dfrac{25}{25}\right):\left(\dfrac{1}{25}-\dfrac{5}{25}-\dfrac{25}{25}\right)\)

\(=\dfrac{31}{25}:\dfrac{-29}{25}=\dfrac{-31}{29}\)

c: \(=\dfrac{\dfrac{1}{9}-\dfrac{1}{7}-\dfrac{1}{11}}{\dfrac{4}{9}-\dfrac{4}{7}-\dfrac{4}{11}}+\dfrac{\dfrac{3}{5}-\dfrac{3}{25}-\dfrac{3}{125}-\dfrac{3}{625}}{\dfrac{4}{5}-\dfrac{4}{25}-\dfrac{4}{125}-\dfrac{4}{625}}\)

=1/4+3/4

=1

10 tháng 12 2022

Câu 2

(a+3)(b-4)-(a-3)(b+4)=0

=>ab-4a+3b-12-ab-4a+3b+12=0

=>-8a=-6b

=>a/b=3/4

=>a/3=b/4

11 tháng 11 2018

e)\(16\dfrac{2}{7}:\left(-\dfrac{3}{5}\right)+28\dfrac{2}{7}:\left(-\dfrac{3}{5}\right)\)

=\(\left(16\dfrac{2}{7}+28\dfrac{2}{7}\right):\left(-\dfrac{3}{5}\right)\)

=\(\dfrac{312}{7}\)\(:\left(-\dfrac{3}{5}\right)\)

=\(-\dfrac{516}{7}\)

11 tháng 11 2018

a)\(\dfrac{7}{8}.\left(\dfrac{2}{12}+\dfrac{4}{10}\right)\)

=\(\dfrac{7}{8}.\left(\dfrac{1}{6}+\dfrac{2}{5}\right)\)

=\(\dfrac{7}{8}.\)\(\dfrac{17}{30}\)

=\(\dfrac{119}{240}\)