- Tìm giá trị nhỏ nhất của biểu thức P=2003-1003:(999-x) với x thuộc N
- Tìm các chữ số a,b,c,d biết a.bcd.abc=abcabc (tất cả đều là số tự nhiên)
Làm ơn giúp mình với,chiều mình phải nộp rồi
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Để \(A=2003-\frac{1003}{999-x}\) có giá trị nhỏ nhất
\(\Rightarrow\frac{1003}{999-x}\) có giá trị lớn nhất
\(\frac{1003}{999-x}\ge1003\)
Dấu "=" xảy ra khi
\(\frac{1003}{999-x}=1003\)
=> 999 - x = 1
x = 999-1
x = 998
=> giá trị nhỏ nhất của \(A=2003-\frac{1003}{999-998}=2003-1003=1000\) tại x = 998
b) Để \(A=2003-\frac{1003}{999+x}\) đạt giá trị nhỏ nhất
=> \(\frac{1003}{999+x}\) có giá trị lớn nhất
mà x là số tự nhiên
\(\Rightarrow\frac{1003}{999+x}\ge\frac{1003}{999}\)
Dấu "=" xảy ra khi
1003/(999+x) = 1003/999
=> 999 + x = 999
x = 0
=> giá trị nhỏ nhất của A = 2003 - 1003/999+0 = 2003 - 1003/999 = 2002 và 4/999 tại x = 0
B = 2003 - \(\dfrac{1003}{999-x}\) đk \(x\) # 999
B = 2003 + \(\dfrac{1003}{x-999}\)
Nếu \(x\) > 999 ⇒ \(x-999>0\) ⇒ \(\dfrac{1003}{x-999}\) > 0
⇒ 2003 + \(\dfrac{1003}{x-999}\) > 2003 (1)
Nếu \(x\) < 999 ⇒ \(x-999\) < 0 ⇒ \(\dfrac{1003}{x-999}\) < 0
2003 + \(\dfrac{1003}{x-999}\) < 2003
Vì \(x\) là số tự nhiên nên 2003 + \(\dfrac{1003}{x-999}\) đạt giá trị nhỏ nhất ⇔
\(\dfrac{1003}{x-999}\) đạt giá trị nhỏ nhất ⇔ \(x-999\) đạt giá trị lớn nhất
\(x-999\) đạt giá trị lớn nhất \(\Leftrightarrow\) \(x\) lớn nhất.
vì \(x\) là số tự nhiên và \(x\) < 999 nên \(x\) lớn nhất khi \(x\) = 998
⇒ Vậy Bmin = 2003 + \(\dfrac{1003}{998-999}\) = 2003 - 1003 = 1000 (2)
Kết hợp (1) và(2) ta có:
Giá trị nhỏ nhất của B là 1000 xả ra khi \(x\) = 998
Có n thuộc N
=> 999 - x \(\le\)999
=> 1003 : (999 - x) \(\ge\)1003
=> 2003 - 1003 : (999 - x) \(\ge\)2003
=> A \(\ge\)2003
Dấu "=" xảy ra <=> 999 - x = 1 (999 - 1 khác 0 vì số chia ko thể bằng 0)
<=> x = 998
KL: Amin = 2003 <=> x = 998
Vì 1003 < 999, nên phần tử trong dấu chia sẽ nhỏ hơn 1
Vậy giá trị nhỏ nhất của biểu thức A làA = 2023 - 1003:999 = 2023 - 1 = 2022.
Bài 1 : P = 2003 - 1003 : (999 - x) có GTNN
<=> 1003 : (999 - x) có GTLN
<=> 999 - x có GTNN
Vì 999 - x là số chia khác 0 và x thuộc N nên suy ra x = 998
Vậy P = 2003 - 1003 : (999 - 998) = 2003 - 1003 : 1 = 2003 - 1003 = 1000 có GTNN tại x = 998
Bài 2 thì bạn xem bài làm của mình ở đây nhá Câu hỏi của Đặng Trọng Hoàng - Toán lớp 6 - Học toán với OnlineMath