K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 9 2016

Công thức tính số đường chéo theo n:  \(\frac{n\left(n-3\right)}{2}\)

17 tháng 2 2017

\(\frac{n\left(n-3\right)}{2}\)

20 tháng 12 2015

hình như toàn chép bài nhau thì phải

20 tháng 12 2015

Gọi n là số cạnh của đa giác. 
Ta có : 

- Số đường chéo của đa giác là : n(n−3)2 

Cái này dễ chứng minh thôi bn! 

Từ mỗi đỉnh của hình n giác lồi ta vẽ được n - 1 đoạn thẳng nối đỉnh đó với n - 1 đỉnh còn lại, trong đó có 2 đoạn thẳng trùng với 2 cạnh của đa giác. Vậy qua mỗi đỉnh của hình n giác lồi vẽ được n - 3 đường chéo, hình n giác có n đỉnh nên vẽ được n(n - 3) đường chéo, trong đó mỗi đường chéo được tính 2 lần nên thực chất chỉ có n(n−3)2 đường chéo. 

- Tổng số đo các góc trong đa giác : 180o.(n−2) 

Còn số cạnh của đa giác thì tự đếm ra, nếu đề bài cho 1 số gt bắt tìm số cạnh thì dựa vào công thức tính đường chéo hay công thức tính số đo 1 góc đa giác đều (180o.(n−2)n.

Số đường chéo xuất phát từ mỗi đỉnh của đa giác n cạnh là n - 3.

__________________

7 tháng 7 2018

Đáp án A

Phương pháp

Tìm số cạnh và số đường chéo của đa giác đều n cạnh.

Cách giải

Khi nối hai đỉnh bất kì của đa giác ta được một số đoạn thẳng, trong đó bao gồm cạnh của đa giác và đường chéo của đa giác đó.

Đa giác đều n cạnh có n đỉnh, do đó số đường chéo là C n 2 − n  

Theo giả thiết bài toán ta có 

C n 2 − n = n ⇔ C n 2 = 2 n ⇔ n ! 2 ! n − 2 ! = 2 n ⇔ n n − 1 = 4 n ⇔ n − 1 = 4 ⇔ n = 5

15 tháng 8 2018

Đáp án A

Phương pháp

Tìm số cạnh và số đường chéo của đa giác đều n cạnh.

Cách giải

Khi nối hai đỉnh bất kì của đa giác ta được một số đoạn thẳng, trong đó bao gồm cạnh của đa giác và đường chéo của đa giác đó.

Đa giác đều n cạnh có n đỉnh, do đó số đường chéo là C n 2   -   n  

Theo giả thiết bài toán ta có

19 tháng 3 2020

Đặt n(n-3)/2 (*)

*)Với n=4  => có  4(4-3)/2=2
=> * đúng với n =2
*)Giả sử (*)đúng với n=k có => k(k-3)/2 với đa giác lồi có k cạnh
*) Ta chứng minh cho (*) đúng với n=k+1 <=> đa giác lồi k+1 cạnh có (k+1)(k-2)/2 đường chéo.
Thật vậy,để ý rằng,đa giác lồi có k cạnh nếu thêm 1 đỉnh sẽ có thêm k-1 đường chéo
=>
số đường chéo của đa giác lồi k+1 cạnh là :
 k(k-3)/2 +k-1= (k^2-k-2)/2=(k+1)(k-2)/2 (đúng)
=> đpcm

2 tháng 8 2018

Ta có: ( n − 2 ) .180 0 n = 120 0 . Tìm được n = 6 Þ số đường chéo là 9 đường chéo

13 tháng 12 2017

a) \(\frac{\left(24-3\right).24}{2}=252\)đường chéo

b) \(\left(n-3\right).n=340\)

\(n^2-3n=340\)

\(n^2-3n-340=0\)

\(n^2-20n+17n-340=0\)

\(n\left(n-20\right)+17\left(n-20\right)\)

\(\left(n+17\right)\left(n-20\right)=0\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}n+17=0\\n-20=0\end{cases}}\)\(\Leftrightarrow\)\(\orbr{\begin{cases}n=-17\\n=20\end{cases}}\)

n = -17 ( loại )

n = 20 ( nhận )

Vậy n = 20 hay số cạnh của đa giác là 20 

13 tháng 12 2017

1 Đa giác có n cạnh có : 

- Số đường chéo từ 1 đỉnh là : (n - 3) 
- Số đỉnh là n 

Do 1 đường chéo nối 2 đỉnh 
=> 1 Đa giác có n cạnh có n(n - 3)/2 đường chéo 

biết tổng số đường chéo là 170 

=> n(n - 3)/2 = 170 

=> n² - 3n - 340 = 0 

∆ = (-3)² - 4.(-340) = 1369 

=> √∆ = 37 

=> n = ... (tự giải)