K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
31 tháng 7 2021

\(A=x\left(x+2\right)\left(x+4\right)\left(x+6\right)+8\)

\(=\left(x^2+6x\right)\left(x^2+6x+8\right)+8\)

\(=\left(x^2+6x+4\right)^2-4^2+8\)

\(=\left(x^2+6x+4\right)^2-8\ge-8\)

Dấu \(=\)khi \(x^2+6x+4=0\Leftrightarrow x=-3\pm\sqrt{5}\).

\(B=5+\left(1-x\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)\)

\(=5-\left[\left(x-1\right)\left(x+6\right)\right].\left[\left(x+2\right)\left(x+3\right)\right]\)

\(=5-\left(x^2+5x-6\right)\left(x^2+5x+6\right)\)

\(=5-\left(x^2+5x\right)^2+6^2\)

\(=41-\left(x^2+5x\right)^2\le41\)

Dấu \(=\)khi \(x^2+5x=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=-5\end{cases}}\)

\(C=\left(x+3\right)^4+\left(x-7\right)^4=\left[\left(x-2\right)+5\right]^4+\left[\left(x-2\right)-5\right]^4\)

\(=2\left(x-2\right)^4+300\left(x-2\right)^2+1250\ge1250\)

Dấu \(=\)khi \(x-2=0\Leftrightarrow x=2\).

AH
Akai Haruma
Giáo viên
30 tháng 7 2021

1.

$x(x+2)(x+4)(x+6)+8$

$=x(x+6)(x+2)(x+4)+8=(x^2+6x)(x^2+6x+8)+8$

$=a(a+8)+8$ (đặt $x^2+6x=a$)

$=a^2+8a+8=(a+4)^2-8=(x^2+6x+4)^2-8\geq -8$

Vậy $A_{\min}=-8$ khi $x^2+6x+4=0\Leftrightarrow x=-3\pm \sqrt{5}$

AH
Akai Haruma
Giáo viên
30 tháng 7 2021

2.

$B=5+(1-x)(x+2)(x+3)(x+6)=5-(x-1)(x+6)(x+2)(x+3)$

$=5-(x^2+5x-6)(x^2+5x+6)$

$=5-[(x^2+5x)^2-6^2]$

$=41-(x^2+5x)^2\leq 41$

Vậy $B_{\max}=41$. Giá trị này đạt tại $x^2+5x=0\Leftrightarrow x=0$ hoặc $x=-5$

Tìm GTLN - GTNN của các biểu thức ?* bài 1: Tìm GTNN: a) A= (x - 5)² + (x² - 10x)² - 24 b) B= (x - 7)² + (x + 5)² - 3 c) C= 5x² - 6x +1 d) D= 16x^4 + 8x² - 9 e) A= (x + 1)(x - 2)(x - 3)(x - 6) f) B= (x - 2)(x - 4)(x² - 6x + 6) g) C= x^4 - 8x³ + 24x² - 8x + 25 h) D= x^4 + 2x³ + 2x² + 2x - 2 i) A= x² + 4xy + 4y² - 6x – 12y +4 k) B= 10x² + 6xy + 9y² - 12x +15 l) C= 5x² - 4xy + 2y² - 8x – 16y +83 m) A= (x - 5)^4 + (x - 7)^4 – 10(x - 5)²(x - 7)² + 9 * Bài 2: Tìm...
Đọc tiếp

Tìm GTLN - GTNN của các biểu thức ?

* bài 1: Tìm GTNN: 
a) A= (x - 5)² + (x² - 10x)² - 24 
b) B= (x - 7)² + (x + 5)² - 3 
c) C= 5x² - 6x +1 
d) D= 16x^4 + 8x² - 9 

e) A= (x + 1)(x - 2)(x - 3)(x - 6) 
f) B= (x - 2)(x - 4)(x² - 6x + 6) 
g) C= x^4 - 8x³ + 24x² - 8x + 25 
h) D= x^4 + 2x³ + 2x² + 2x - 2 

i) A= x² + 4xy + 4y² - 6x – 12y +4 
k) B= 10x² + 6xy + 9y² - 12x +15 
l) C= 5x² - 4xy + 2y² - 8x – 16y +83 

m) A= (x - 5)^4 + (x - 7)^4 – 10(x - 5)²(x - 7)² + 9 

* Bài 2: Tìm GTLN: 
a) M= -7x² + 4x -12 
b) N= -16x² - 3x +14 

c) M= -x^4 + 4x³ - 7x² + 12x -5 
d) N= -(x² + x – 2) (x² +9x+18) +27 

* Bài 3: 
1) Cho x - 3y = 1. Tìm GTNN của M= x² + 4y² 
2) Cho 4x - y = 5. Tìm GTNN của 3x²+2y² 
3) Cho a + 2b = 2. Tìm GTNN của a³ + 8b³ 

* Bài 4: Tìm GTLN và GTNN của các biểu thức: 
1) A = (3 - 4x)/(x² + 1) 
2) B= (8x + 3)/(4x² + 1) 
3) C= (2x+1)/(x²+2)

0
28 tháng 2 2021

 4-3=2( dân chơi mới hiểu)

22 tháng 6 2021

Chắc là viết thiếu số "1" đấy, sợ lớp 11 còn chưa làm được cơ

 

10 tháng 7 2018

1.(√x -2)^2 ≥ 0 --> x -4√x +4 ≥ 0 --> x+16 ≥ 12 +4√x --> (x+16)/(3+√x) ≥4 
--> Pmin=4 khi x=4

4 tháng 5 2021

2. Đặt \(\sqrt{x^2-4x+5}=t\ge1\)1

=> M=2x2-8x+\(\sqrt{x^2-4x+5}\)+6=2(t2-5)+t+6

<=> M=2t2+t-4\(\ge\)2.12+1-4=-1

Mmin=-1 khi t=1 hay x=2

16 tháng 6 2016

Vì bài dài nên mk làm hơi tắt tí nhé có chỗ nào ko hiểu thì nhắn lại với mình :))

1)  Ta thấy:\(5+\left|x-2\right|\le5+0=5\)\(B=8-\left|x+3\right|\le8-0=8\)

Vậy MaxA=5<=>x=2

2) Ta thấy:\(B=8-\left|x+3\right|\le8-0=8\)

Vậy MaxB=8<=>x=-3

3) Ta thấy:\(2\left|x-3\right|+5\ge0+5=5\)

Vậy MinC=5<=>x=3

4)Ta thấy:\(6-3\left|2x-1\right|\le6-0=6\)

Vậy MaxD=6<=>x=1/2

5)mấy câu 5,6,7 bạn dùng BĐT |a|+|b|>=|a+b| nhé

\(E=\left|x-2\right|+\left|5-x\right|\ge\left|x-2+5-x\right|=7\)

Vậy MinE=7<=>x=2 hoặc 5

6)\(F=\left|7-x\right|+\left|x+1\right|\ge\left|7-x+x+1\right|=8\)

Vậy MinF=8<=>x=7 hoặc -1

7)\(H=\left|x+3\right|+\left|x-2\right|\ge\left|x+3-x-2\right|=1\)

Vậy MinH=1<=>x=-3 hoặc 2

8)  I=|7-1|+|-2-1|

I=9 (đề bắt tìm Min và Max sao câu này ko có x nhỉ )

18 tháng 11 2018

\(A=x^2-6x+10\)

\(\Leftrightarrow A=x^2-2\cdot x\cdot3+3^2-9+10\)

\(\Leftrightarrow A=\left(x-3\right)^2+1\ge1\)     \(\forall x\in z\)

\(\Leftrightarrow A_{min}=1khix=3\)

\(B=3x^2-12x+1\)

\(\Leftrightarrow B=\left(\sqrt{3}x\right)^2-2\cdot\sqrt{3}x\cdot2\sqrt{3}+\left(2\sqrt{3}\right)^2-12+1\)

\(\Leftrightarrow B=\left(\sqrt{3}x-2\sqrt{3}\right)^2-11\ge-11\)    \(\forall x\in z\)

\(\Leftrightarrow B_{min}=-11khix=2\)