Tìm GTNN của A= x.(x+2).(x+4).(x+6)+8
Tìm GTLN của B= 5+(1-x)(x+2)(x+3)(x+6)
Tìm GTNN của C = (x+3)4 + (x-7)4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
$x(x+2)(x+4)(x+6)+8$
$=x(x+6)(x+2)(x+4)+8=(x^2+6x)(x^2+6x+8)+8$
$=a(a+8)+8$ (đặt $x^2+6x=a$)
$=a^2+8a+8=(a+4)^2-8=(x^2+6x+4)^2-8\geq -8$
Vậy $A_{\min}=-8$ khi $x^2+6x+4=0\Leftrightarrow x=-3\pm \sqrt{5}$
2.
$B=5+(1-x)(x+2)(x+3)(x+6)=5-(x-1)(x+6)(x+2)(x+3)$
$=5-(x^2+5x-6)(x^2+5x+6)$
$=5-[(x^2+5x)^2-6^2]$
$=41-(x^2+5x)^2\leq 41$
Vậy $B_{\max}=41$. Giá trị này đạt tại $x^2+5x=0\Leftrightarrow x=0$ hoặc $x=-5$
1.(√x -2)^2 ≥ 0 --> x -4√x +4 ≥ 0 --> x+16 ≥ 12 +4√x --> (x+16)/(3+√x) ≥4
--> Pmin=4 khi x=4
2. Đặt \(\sqrt{x^2-4x+5}=t\ge1\)1
=> M=2x2-8x+\(\sqrt{x^2-4x+5}\)+6=2(t2-5)+t+6
<=> M=2t2+t-4\(\ge\)2.12+1-4=-1
Mmin=-1 khi t=1 hay x=2
Vì bài dài nên mk làm hơi tắt tí nhé có chỗ nào ko hiểu thì nhắn lại với mình :))
1) Ta thấy:\(5+\left|x-2\right|\le5+0=5\)\(B=8-\left|x+3\right|\le8-0=8\)
Vậy MaxA=5<=>x=2
2) Ta thấy:\(B=8-\left|x+3\right|\le8-0=8\)
Vậy MaxB=8<=>x=-3
3) Ta thấy:\(2\left|x-3\right|+5\ge0+5=5\)
Vậy MinC=5<=>x=3
4)Ta thấy:\(6-3\left|2x-1\right|\le6-0=6\)
Vậy MaxD=6<=>x=1/2
5)mấy câu 5,6,7 bạn dùng BĐT |a|+|b|>=|a+b| nhé
\(E=\left|x-2\right|+\left|5-x\right|\ge\left|x-2+5-x\right|=7\)
Vậy MinE=7<=>x=2 hoặc 5
6)\(F=\left|7-x\right|+\left|x+1\right|\ge\left|7-x+x+1\right|=8\)
Vậy MinF=8<=>x=7 hoặc -1
7)\(H=\left|x+3\right|+\left|x-2\right|\ge\left|x+3-x-2\right|=1\)
Vậy MinH=1<=>x=-3 hoặc 2
8) I=|7-1|+|-2-1|
I=9 (đề bắt tìm Min và Max sao câu này ko có x nhỉ )
\(A=x^2-6x+10\)
\(\Leftrightarrow A=x^2-2\cdot x\cdot3+3^2-9+10\)
\(\Leftrightarrow A=\left(x-3\right)^2+1\ge1\) \(\forall x\in z\)
\(\Leftrightarrow A_{min}=1khix=3\)
\(B=3x^2-12x+1\)
\(\Leftrightarrow B=\left(\sqrt{3}x\right)^2-2\cdot\sqrt{3}x\cdot2\sqrt{3}+\left(2\sqrt{3}\right)^2-12+1\)
\(\Leftrightarrow B=\left(\sqrt{3}x-2\sqrt{3}\right)^2-11\ge-11\) \(\forall x\in z\)
\(\Leftrightarrow B_{min}=-11khix=2\)
\(A=x\left(x+2\right)\left(x+4\right)\left(x+6\right)+8\)
\(=\left(x^2+6x\right)\left(x^2+6x+8\right)+8\)
\(=\left(x^2+6x+4\right)^2-4^2+8\)
\(=\left(x^2+6x+4\right)^2-8\ge-8\)
Dấu \(=\)khi \(x^2+6x+4=0\Leftrightarrow x=-3\pm\sqrt{5}\).
\(B=5+\left(1-x\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)\)
\(=5-\left[\left(x-1\right)\left(x+6\right)\right].\left[\left(x+2\right)\left(x+3\right)\right]\)
\(=5-\left(x^2+5x-6\right)\left(x^2+5x+6\right)\)
\(=5-\left(x^2+5x\right)^2+6^2\)
\(=41-\left(x^2+5x\right)^2\le41\)
Dấu \(=\)khi \(x^2+5x=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=-5\end{cases}}\)
\(C=\left(x+3\right)^4+\left(x-7\right)^4=\left[\left(x-2\right)+5\right]^4+\left[\left(x-2\right)-5\right]^4\)
\(=2\left(x-2\right)^4+300\left(x-2\right)^2+1250\ge1250\)
Dấu \(=\)khi \(x-2=0\Leftrightarrow x=2\).