K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
31 tháng 7 2021

\(A=x\left(x+2\right)\left(x+4\right)\left(x+6\right)+8\)

\(=\left(x^2+6x\right)\left(x^2+6x+8\right)+8\)

\(=\left(x^2+6x+4\right)^2-4^2+8\)

\(=\left(x^2+6x+4\right)^2-8\ge-8\)

Dấu \(=\)khi \(x^2+6x+4=0\Leftrightarrow x=-3\pm\sqrt{5}\).

\(B=5+\left(1-x\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)\)

\(=5-\left[\left(x-1\right)\left(x+6\right)\right].\left[\left(x+2\right)\left(x+3\right)\right]\)

\(=5-\left(x^2+5x-6\right)\left(x^2+5x+6\right)\)

\(=5-\left(x^2+5x\right)^2+6^2\)

\(=41-\left(x^2+5x\right)^2\le41\)

Dấu \(=\)khi \(x^2+5x=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=-5\end{cases}}\)

\(C=\left(x+3\right)^4+\left(x-7\right)^4=\left[\left(x-2\right)+5\right]^4+\left[\left(x-2\right)-5\right]^4\)

\(=2\left(x-2\right)^4+300\left(x-2\right)^2+1250\ge1250\)

Dấu \(=\)khi \(x-2=0\Leftrightarrow x=2\).

30 tháng 7 2018

từ từ ít ít từng câu thôi bạn ơi

23 tháng 11 2021

Answer:

3.

\(x^2+2y^2+2xy+7x+7y+10=0\)

\(\Rightarrow\left(x^2+2xy+y^2\right)+7x+7y+y^2+10=0\)

\(\Rightarrow\left(x+y\right)^2+7.\left(x+y\right)+y^2+10=0\)

\(\Rightarrow4S^2+28S+4y^2+40=0\)

\(\Rightarrow4S^2+28S+49+4y^2-9=0\)

\(\Rightarrow\left(2S+7\right)^2=9-4y^2\le9\left(1\right)\)

\(\Rightarrow-3\le2S+7\le3\)

\(\Rightarrow-10\le2S\le-4\)

\(\Rightarrow-5\le S\le-2\left(2\right)\)

Dấu " = " xảy ra khi: \(\left(1\right)\Rightarrow y=0\)

Vậy giá trị nhỏ nhất của \(S=x+y=-5\Rightarrow\hept{\begin{cases}y=0\\x=-5\end{cases}}\)

Vậy giá trị lớn nhất của \(S=x+y=-2\Rightarrow\hept{\begin{cases}y=0\\x=-2\end{cases}}\)

26 tháng 7 2016

bài này dễ ẹt ak 

nhưng giúp mình bài này đi 

chotam giac abc . co canh bc=12cm, duong cao ah=8cm

a> tinh s tam giac abc

b> tren canh bc lay diem e sao cho be=3/4bc. tinh s tam giac abe va s tam giac ace ( bằng nhiều cách )

c> lay diem chinh giua cua canh ac va m . tinh s tam giac ame

25 tháng 12 2017

Ta có : P = x4 + x2 - 6x + 9 = x4 + (x2 - 6x + 9) = x4 + (x - 3)2

Mà : x4 \(\ge0\forall x\in R\) 

       (x - 3)\(\ge0\forall x\in R\)

Nên : P = x4 + (x - 3)2 \(\le x-x-3=-3\) 

Vậy GTNN của P = 3 khi x = 0 

       

AH
Akai Haruma
Giáo viên
30 tháng 7 2021

1.

$x(x+2)(x+4)(x+6)+8$

$=x(x+6)(x+2)(x+4)+8=(x^2+6x)(x^2+6x+8)+8$

$=a(a+8)+8$ (đặt $x^2+6x=a$)

$=a^2+8a+8=(a+4)^2-8=(x^2+6x+4)^2-8\geq -8$

Vậy $A_{\min}=-8$ khi $x^2+6x+4=0\Leftrightarrow x=-3\pm \sqrt{5}$

AH
Akai Haruma
Giáo viên
30 tháng 7 2021

2.

$B=5+(1-x)(x+2)(x+3)(x+6)=5-(x-1)(x+6)(x+2)(x+3)$

$=5-(x^2+5x-6)(x^2+5x+6)$

$=5-[(x^2+5x)^2-6^2]$

$=41-(x^2+5x)^2\leq 41$

Vậy $B_{\max}=41$. Giá trị này đạt tại $x^2+5x=0\Leftrightarrow x=0$ hoặc $x=-5$

11 tháng 9 2017

a) A = (x-1)(x+2)(x+3)(x+6)

A= [(x-1)(x+6)][(x+2)(x+3)]

A=(x^2 + 5x - 6)(x^2 + 5x + 6) ( cái này mik làm tắt)

A = (x^2+5x)^2 - 6^2

A= (x^2+5x)^2 - 36

...

11 tháng 9 2017

a, GTNN của A là 0 vì nếu x>0 thì GTNN của x là 1 mà trong A có (x-1) có thể bằng (1-1) = 0 mà 0 nhân với bất kì số nào cũng bằng 0

1 tháng 8 2019

#)Giải :

a) \(f\left(x\right)=\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)\)

\(=\left[\left(x-1\right)\left(x+6\right)\right]\left[\left(x+2\right)\left(x+3\right)\right]\)

\(=\left(x^2+5x+6\right)\left(x^2+5x+6\right)\)

\(=\left(x^2+5x\right)^2-36\ge-36\)

Dấu ''='' xảy ra \(\Leftrightarrow\) \(\orbr{\begin{cases}x=0\\x=-5\end{cases}}\)

b) \(A=\left(1-x^n\right)\left(1+x^n\right)+\left(2-y^n\right)\left(2+y^n\right)\)

\(=1-x^{2n}+4-y^{2n}=5-x^{2n}-y^{2n}\le5\)

Dấu ''='' xảy ra \(\Leftrightarrow\) x = y = 0