Tìm số A là một số có 33 chữ số. Biết rằng: \left(A-7\right)(A−7) ⋮ 77, \left(A-8\right)(A−8) ⋮ 88, \left(A-9\right)(A−9) ⋮ 99.
Trả lời: A =
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm số AA là một số có 33 chữ số. Biết rằng: \left(A-7\right)(A−7) ⋮ 77, \left(A-8\right)(A−8) ⋮ 88, \left(A-9\right)(A−9) ⋮ 99.
1b)
Đặt \(\overline{abcd}=k^2\left(k\in N;32\le k\le99\right)\)
Note : nếu k nằm ngoài khoảng giá trị ở trên thì k2 sẽ có ít hơn hoặc nhiều hơn 4 chữ số
Theo bài cho :
\(\overline{ab}-\overline{cd}=1\Rightarrow\overline{ab}=\overline{cd}+1\Rightarrow\overline{abcd}=k^2\Leftrightarrow100\cdot\overline{ab}+\overline{cd}=k^2\)
\(\Leftrightarrow100\cdot\overline{cd}+100+\overline{cd}=k^2\Leftrightarrow101\cdot\overline{cd}=k^2-100\Leftrightarrow101\overline{cd}=\left(k-10\right)\left(k+10\right)\)
\(\Rightarrow\orbr{\begin{cases}k-10⋮101\\k+10⋮101\end{cases}}\)
Mà \(\text{ }(k-10;101)=1\Rightarrow k+10⋮101\)
Lại có : \(32\le k\le99\Rightarrow42\le k+10\le109\)
\(\Rightarrow k+10=101\Rightarrow k=91\Rightarrow\overline{abcd}=91^2=8182\left(tm\right)\)
a) \(\left(x-9\right)^4=\left(x-9\right)^7\)
\(\Rightarrow\left[{}\begin{matrix}x-9=1\\x-9=0\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=10\\x=9\end{matrix}\right.\)
b) \(\left(3x-15\right)^{10}=\left(3x-15\right)^{15}\)
\(\Rightarrow\left[{}\begin{matrix}3x-15=0\\3x-15=1\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{15}{3}\\x=\dfrac{16}{3}\end{matrix}\right.\)
c) \(\left(x-8\right)^3=\left(x-8\right)^6\)
\(\Rightarrow\left[{}\begin{matrix}x-8=0\\x-8=1\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=8\\x=9\end{matrix}\right.\)
\(\begin{array}{l}a)x - \left( {\dfrac{5}{4} - \dfrac{7}{5}} \right) = \dfrac{9}{{20}}\\x = \dfrac{9}{{20}} + \left( {\dfrac{5}{4} - \dfrac{7}{5}} \right)\\x = \dfrac{9}{{20}} + \dfrac{{25}}{{20}} - \dfrac{{28}}{{20}}\\x = \dfrac{{6}}{{20}}\\x = \dfrac{{ 3}}{{10}}\end{array}\)
Vậy \(x = \dfrac{{ 3}}{{10}}\)
\(\begin{array}{*{20}{l}}{b)9 - x = \dfrac{8}{7} - \left( { - \dfrac{7}{8}} \right)}\\\begin{array}{l}9 - x = \dfrac{8}{7} + \dfrac{7}{8}\\9 - x = \dfrac{{64}}{{56}} + \dfrac{{49}}{{56}}\\9 - x = \dfrac{{113}}{{56}}\end{array}\\{x = 9 - \dfrac{{113}}{{56}}}\\{x = \dfrac{{504}}{{56}} - \dfrac{{113}}{{56}}}\\{x = \dfrac{{391}}{{56}}}\end{array}\)
Vậy \(x = \dfrac{{391}}{{56}}\)
Uầy cái này là bổ đề huyền thoại của lớp 9 rồi :333333333
BĐT cần CM <=> \(9\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8\left(a+b+c\right)\left(ab+bc+ca\right)\)
<=> \(9\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8\left(a+b\right)\left(b+c\right)\left(c+a\right)+8abc\)
<=> \(\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8abc\)
Mà theo CAUCHY 2 số thì \(a+b\ge2\sqrt{ab};b+c\ge2\sqrt{bc};c+a\ge2\sqrt{ca}\)
Nhân lại => \(\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8abc\)
=> Ta có điều phải chứng minh.
Áp dụng BĐT AM-GM với 3 số a, b, c ta luôn có:
\(a+b\ge2\sqrt{ab}\), dấu bằng xảy ra khi a = b.
\(b+c\ge2\sqrt{bc}\), dấu bằng xảy ra khi b = c.
\(a+c\ge2\sqrt{ac}\) , dấu bằng xảy ra khi a = c.
\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge2\sqrt{bc}.2\sqrt{ab}.2\sqrt{ac}=8abc\)
lại có \(\left(a+b\right)\left(b+c\right)\left(c+a\right)+abc=\left(a+b+c\right)\left(ab+bc+ca\right)\le\left(\frac{1}{8}+1\right)\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
\(\Leftrightarrow\left(a+b+c\right)\left(ab+bc+ca\right)\le\frac{9}{8}\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge\frac{8}{9}\left(a+b+c\right)\left(ab+bc+ca\right)\left(đpcm\right)\)
Dấu ''='' xảy ra khi a=b=c
a) | a + 3 | = 7
=> a + 3 = 7 hoặc a + 3 = -7
TH1 : a + 3 = 7
a = 7 - 3
a = 4
TH2 : a + 3 = -7
a = -7 - 3
a = -10
Vậy a \(\in\) { 4 ; -10 }
b) | a - 5 | = (-5) + 8
| a - 5 | = 3
=> a - 5 = 3 hoặc a - 5 = -3
TH1 : a - 5 = 3
a = 3 + 5
a = 8
TH2 : a - 5 = -3
a = -3 + 5
a = 2
Vậy a \(\in\) { 8 ; 2 }
Nhớ ủng hộ 1 Đúng !
a. \(\left|a+3\right|=7\)
TH1: \(a+3=7\)
\(\Leftrightarrow a=7-3\)
\(\Leftrightarrow a=4\)
TH2: \(a+3=-7\)
\(\Leftrightarrow a=-7-3\)
\(\Leftrightarrow a=-10\)
Vậy \(a=4\) hoặc \(a=-10\)
b. \(\left|a-5\right|=\left(-5\right)+8\)
\(\Leftrightarrow\left|a-5\right|=3\)
TH1: \(a-5=3\)
\(\Leftrightarrow a=3+5\)
\(\Leftrightarrow a=8\)
TH2: \(a-5=-3\)
\(\Leftrightarrow a=-3+5\)
\(\Leftrightarrow a=2\)
Vậy \(a=8\) hoặc \(a=2\)