\(\left(a+b\right)\left(b+c\r...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 8 2020

Uầy cái này là bổ đề huyền thoại của lớp 9 rồi :333333333

BĐT cần CM <=> \(9\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8\left(a+b+c\right)\left(ab+bc+ca\right)\)

<=> \(9\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8\left(a+b\right)\left(b+c\right)\left(c+a\right)+8abc\)

<=> \(\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8abc\)

Mà theo CAUCHY 2 số thì \(a+b\ge2\sqrt{ab};b+c\ge2\sqrt{bc};c+a\ge2\sqrt{ca}\)

Nhân lại => \(\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8abc\)

=> Ta có điều phải chứng minh.

5 tháng 8 2020

Áp dụng BĐT AM-GM với 3 số a, b, c ta luôn có:

\(a+b\ge2\sqrt{ab}\), dấu bằng xảy ra khi a = b.

\(b+c\ge2\sqrt{bc}\), dấu bằng xảy ra khi b = c.

\(a+c\ge2\sqrt{ac}\) , dấu bằng xảy ra khi a = c.

\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge2\sqrt{bc}.2\sqrt{ab}.2\sqrt{ac}=8abc\)

lại có \(\left(a+b\right)\left(b+c\right)\left(c+a\right)+abc=\left(a+b+c\right)\left(ab+bc+ca\right)\le\left(\frac{1}{8}+1\right)\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

\(\Leftrightarrow\left(a+b+c\right)\left(ab+bc+ca\right)\le\frac{9}{8}\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge\frac{8}{9}\left(a+b+c\right)\left(ab+bc+ca\right)\left(đpcm\right)\)

Dấu ''='' xảy ra khi a=b=c

NV
5 tháng 10 2019

Ta có: \(\left(a+b+c\right)\left(ab+bc+ca\right)=a^2\left(b+c\right)+ab\left(b+c\right)+bc\left(b+c\right)+ac\left(b+c\right)+abc\)

\(=\left(b+c\right)\left(a^2+ab+bc+ac\right)+abc\)

\(=\left(a+b\right)\left(b+c\right)\left(c+a\right)+abc\)

Vậy BĐT cần chứng minh trở thành:

\(\left(a+b\right)\left(b+c\right)\left(c+a\right)+abc\le\frac{8}{9}\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

\(\Leftrightarrow\frac{1}{9}\left(a+b\right)\left(b+c\right)\left(c+a\right)+abc\le0\) \(?!\)

Bất đẳng thức sai

Thử lại với \(a=b=c=1\) thì \(9\le\frac{64}{9}\) sai thật

BĐT đúng có lẽ là:

\(\left(a+b+c\right)\left(ab+bc+ca\right)\le\frac{9}{8}\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

Khi đó:

\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)+abc\le\frac{9}{8}\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8abc\) (đúng theo AM-GM)

Vậy BĐT được chứng minh, dấu "=" xảy ra khi \(a=b=c\)

6 tháng 10 2019

Sửa đề: \(\frac{8}{9}\left(a+b+c\right)\left(ab+bc+ca\right)\le\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

Ta có:

\(\left(a+b\right)\left(b+c\right)\left(c+a\right)=\left(a+b+c\right)\left(ab+bc+ca\right)-abc\)

\(\ge\left(a+b+c\right)\left(ab+bc+ca\right)-\frac{\left(a+b+c\right)\left(ab+bc+ca\right)}{9}\)

\(=\frac{8}{9}\left(a+b+c\right)\left(ab+bc+ca\right)\)

22 tháng 2 2019

Đặt \(\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)=xyz\) thì bài toán trở thành

Cho \(x+y+z=xyz\) chứng minh

\(P=xyz+\frac{x^2y^2z^2}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\ge\frac{9\sqrt{3}}{3}\)

Ta có:

\(t=x+y+z=xyz\le\frac{\left(x+y+z\right)^3}{27}=\frac{t^3}{27}\)

\(\Leftrightarrow t\ge3\sqrt{3}\)

Ta lại có:

\(P\ge\left(x+y+z\right)+\frac{\left(x+y+z\right)^2}{\frac{8\left(x+y+z\right)^3}{27}}=t+\frac{27}{8t}\)

\(=\left(t+\frac{27}{t}\right)-\frac{189}{8t}\ge6\sqrt{3}-\frac{189}{8.3\sqrt{3}}=\frac{27\sqrt{3}}{8}\)

   PS: Đề sai rồi nha.

22 tháng 2 2019

Đề ko sai đâu ạ, anh giải lại giúp em với 

(

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhh

hhhhhhhhhhhhh

6 tháng 1 2018

sửa giả thiết là \(\left(ab\right)^3+\left(bc\right)^3+\left(ca\right)^3=3\left(abc\right)^2\)

Và Áp dụng BĐT cô-si, ta có \(\left(ab\right)^3+\left(bc\right)^3+\left(ca\right)^3\ge3\left(abc\right)^2\)

dấu = xảy ra <=>a=b=c>0

Thay vào thì \(\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)=8\) (ĐPCM)

^_^

2 tháng 8 2020

Đặt \(a=\frac{1}{x};b=\frac{1}{y};c=\frac{1}{z}\)thì \(x,y,z>0\)và ta cần chứng minh \(\frac{x}{\sqrt{3zx+yz}}+\frac{y}{\sqrt{3xy+zx}}+\frac{z}{\sqrt{3yz+xy}}\ge\frac{3}{2}\)\(\Leftrightarrow\frac{x^2}{x\sqrt{3zx+yz}}+\frac{y^2}{y\sqrt{3xy+zx}}+\frac{z^2}{z\sqrt{3yz+xy}}\ge\frac{3}{2}\)

Áp dụng BĐT Cauchy-Schwarz dạng phân thức, ta có: \(\frac{x^2}{x\sqrt{3zx+yz}}+\frac{y^2}{y\sqrt{3xy+zx}}+\frac{z^2}{z\sqrt{3yz+xy}}\ge\)\(\frac{\left(x+y+z\right)^2}{x\sqrt{3zx+yz}+y\sqrt{3xy+zx}+z\sqrt{3yz+xy}}\)

Áp dụng BĐT Cauchy-Schwarz, ta có: \(x\sqrt{3zx+yz}+y\sqrt{3xy+zx}+z\sqrt{3yz+xy}\)\(=\sqrt{x}.\sqrt{3zx^2+xyz}+\sqrt{y}.\sqrt{3xy^2+xyz}+\sqrt{y}.\sqrt{3yz^2+xyz}\)\(\le\sqrt{\left(x+y+z\right)\left[3\left(xy^2+yz^2+zx^2+xyz\right)\right]}\)

Ta cần chứng minh \(\sqrt{\left(x+y+z\right)\left[3\left(xy^2+yz^2+zx^2+xyz\right)\right]}\le\frac{2}{3}\left(x+y+z\right)^2\)

\(\Leftrightarrow\left(x+y+z\right)^4\ge\frac{9}{4}\left(x+y+z\right)\left[3\left(xy^2+yz^2+zx^2+xyz\right)\right]\)

\(\Leftrightarrow\left(x+y+z\right)^3\ge\frac{27}{4}\left(xy^2+yz^2+zx^2+xyz\right)\)(*)

Không mất tính tổng quát, giả sử \(y=mid\left\{x,y,z\right\}\)thì khi đó \(\left(y-x\right)\left(y-z\right)\le0\Leftrightarrow y^2+zx\le xy+yz\)

\(\Leftrightarrow xy^2+zx^2\le x^2y+xyz\Leftrightarrow xy^2+yz^2+zx^2+xyz\le\)\(x^2y+yz^2+2xyz=y\left(z+x\right)^2=4y.\frac{z+x}{2}.\frac{z+x}{2}\)

\(\le\frac{4}{27}\left(y+\frac{z+x}{2}+\frac{z+x}{2}\right)^3=\frac{4\left(x+y+z\right)^3}{27}\)

Như vậy (*) đúng

Đẳng thức xảy ra khi a = b = c

20 tháng 11 2018

\(\frac{a}{bc\left(c+a\right)}+\frac{b}{ca\left(a+b\right)}+\frac{c}{ab\left(b+c\right)}\)

\(=\frac{1}{abc}\left(\frac{a^2}{c+a}+\frac{b^2}{a+b}+\frac{c^2}{b+c}\right)\)

\(\ge\frac{1}{abc}.\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{1}{abc}.\frac{\left(a+b+c\right)}{2}\)

\(\ge\frac{27}{\left(a+b+c\right)^3}.\frac{a+b+c}{2}=\frac{27}{2\left(a+b+c\right)^2}\)

20 tháng 11 2018

Mình áp dụng BĐT Bunhiacopski được  ko bạn?