K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
5 tháng 1 2023

Lời giải:

ĐKĐB $\Leftrightarrow (x^2+4y^2-4xy)+8x=5$

$\Leftrightarrow (x-2y)^2+8x=5$.

Đặt $x-2y=a; x=b$ thì bài toán trở thành:

Cho $a,b$ thực thỏa mãn $a^2+8b=5$. Tìm max của $B=-2a+8b$

Áp dụng BĐT AM-GM:

$a^2+1\geq 2\sqrt{a^2}=2|a|\geq -2a$

$\Rightarrow a^2+1\geq -2a$

$\Rightarrow a^2+8b+1\geq -2a+8b$

$\Leftrightarrow 6\geq B$. Vậy $B_{\max}=6$

4 tháng 9 2016

1) (x-1)2 + (x- 4y)2 + (y + 2)2 +10 -1-4

GTNN = 5

2) tuong tu 

NV
6 tháng 2 2021

\(\left(x+\sqrt{x^2+2020}\right)\left(2y+\sqrt{\left(2y\right)^2+2020}\right)=2020\)

\(\Leftrightarrow\left\{{}\begin{matrix}2y+\sqrt{\left(2y\right)^2+2020}=\sqrt{x^2+2020}-x\\x+\sqrt{x^2+2020}=\sqrt{\left(2y\right)^2+2020}-2y\end{matrix}\right.\)

\(\Rightarrow x+2y+\sqrt{x^2+2020}+\sqrt{\left(2y\right)^2+2020}=-x-2y+\sqrt{x^2+2020}+\sqrt{\left(2y\right)^2+2020}\)

\(\Leftrightarrow2\left(x+2y\right)=0\)

\(\Leftrightarrow x=-2y\)

\(\Rightarrow B=2y^2-8y^2+3y^2-2y+3y+15\)

\(\Rightarrow B=-3y^2+y+15=-3\left(y-\dfrac{1}{6}\right)^2+\dfrac{181}{12}\)

\(B_{max}=\dfrac{181}{12}\) khi \(y=\dfrac{1}{6}\)

6 tháng 2 2021

yeu

25 tháng 8 2021

bạn viết lại đề đi, có số mũ, xuống dòng chứ thế này ai mà giải được

6 tháng 1 2021

a) Ta có: \(Q=-x^2-y^2+4x-4y+2=-\left(x^2+y^2-4x+4y-2\right)\)

\(=-\left(x^2-4x+4+y^2+4y+4\right)+10\)

\(=-\left[\left(x-2\right)^2+\left(y+2\right)^2\right]+10\le10\forall x,y\)

Vậy MaxQ=10 khi x=2, y=-2

b) +Ta có: \(A=-x^2-6x+5=-\left(x^2+6x-5\right)=-\left(x^2+6x+9-14\right)\)

\(=-\left(x^2+6x+9\right)+14=-\left(x+3\right)^2+14\le14\forall x\)

Vậy MaxA=14 khi x=-3

+Ta có: \(B=-4x^2-9y^2-4x+6y+3=-\left(4x^2+9y^2+4x-6y-3\right)\)

\(=-\left(4x^2+4x+1+9y^2-6y+1-5\right)\)

\(=-\left[\left(2x+1\right)^2+\left(3y-1\right)^2\right]+5\le5\forall x,y\)

Vậy MaxB=5 khi x=-1/2, y=1/3

c) Ta có: \(P=x^2+y^2-2x+6y+12=x^2-2x+1+y^2+6y+9+2\)

\(=\left(x-1\right)^2+\left(y+3\right)^2+2\ge2\forall x,y\)

Vậy MinP=2 khi x=1, y=-3

30 tháng 10 2021

\(A=-2x^2-10y^2+4xy+4x+4y+2016\\ A=-2x^2+4xy-4y^2+4\left(x-y\right)-2-6y^2+8y+2018\\ A=-2\left(x-y\right)^2+4\left(x-y\right)-2-6\left(y^2-\dfrac{4}{3}y\right)+2018\\ A=-2\left[\left(x-y\right)^2-2\left(x-y\right)+1\right]-6\left(y^2-2\cdot\dfrac{2}{3}y+\dfrac{9}{4}\right)+\dfrac{27}{2}+2018\\ A=-2\left(x-y-1\right)^2-6\left(y-\dfrac{3}{2}\right)^2+\dfrac{4063}{2}\le\dfrac{4063}{3}\\ A_{max}=\dfrac{4063}{2}\Leftrightarrow\left\{{}\begin{matrix}x-y=1\\y=\dfrac{3}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{5}{2}\\y=\dfrac{3}{2}\end{matrix}\right.\)

27 tháng 7 2016

\(F=3-10x^2-4xy-4y^2=-10\left[x^2+\frac{2}{5}xy+\left(\frac{2}{5}y\right)^2-\frac{3}{10}\right]=-10\left(x+\frac{2}{5}y\right)^2+\frac{3}{10}\)

Vì \(\left(x+\frac{2}{5}y\right)^2\ge0\left(x;y\in R\right)\)

nên \(-10\left(x+\frac{2}{5}y\right)^2\le0\left(x;y\in R\right)\)

do đó \(-10\left(x+\frac{2}{5}y\right)^2+\frac{3}{10}\le\frac{3}{10}\left(x;y\in R\right)\)

Vậy \(Max_F=\frac{3}{10}\)khi \(x+\frac{2}{5}y=0\Rightarrow x=-\frac{2}{5}y\Rightarrow y=-\frac{5x}{2}\)